Toán 10 Kết nối tri thức Bài 27: Thực hành tính xác suất theo định nghĩa cổ điển

1.1 K

Toptailieu.vn giới thiệu Giải bài tập Toán lớp 10 Bài 27: Thực hành tính xác suất theo định nghĩa cổ điển sách Kết nối tri thức giúp học sinh xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 10 Tập 2. Mời các bạn đón xem:

Toán 10 Kết nối tri thức Bài 27: Thực hành tính xác suất theo định nghĩa cổ điển

1. Sử dụng phương pháp tổ hợp

HĐ1 trang 83 SGK Toán 10 Tập 2: Theo định nghĩa cổ điển của xác suất, để tính xác suất của biến cố F: “Bạn An trúng giải độc đắc" và biến cố G: “Bạn An trúng giải nhất" ta cần xác định n(Ω ), n(F) và n(G). Liệu có thể tính n(Ω), n(F) và n(G) bằng cách liệt kê ra hết các phần tử của Ω, F và G rồi kiểm đếm được không?

Lời giải:

Không thể tính n(Ω), n(F) và n(G) bằng cách liệt kê ra hết các phần tử của Ω, F và G rồi kiểm đếm.

Câu hỏi trang 84 Toán 10

Luyện tập 1 trang 84 SGK Toán 10 Tập 2: Một tổ trong lớp 10B có 12 học sinh, trong đó có 7 học sinh nam và 5 học sinh nữ. Giáo viên chọn ngẫu nhiên 6 học sinh trong tổ để kiểm tra vở bài tập Toán. Tính xác suất để trong 6 học sinh được chọn số học sinh nữ bằng số học sinh nam.

Phương pháp giải:

a) Ω là tập tất cả 6 học sinh trong 12 học sinh.

b) Sử dụng quy tắc nhân: Có C73=35 cách chọn 3 học sinh nam từ 7 học sinh nam và có C53 cách chọn 3 học sinh nữ từ 5 học sinh nữ.

Lời giải:

Ω là tập tất cả 6 học sinh trong 12 học sinh. Vậy n(Ω)=C126=924.

Gọi C là biến cố: “Có 3 học sinh nam và 3 học sinh nữ”. Có C73 cách chọn chọn 3 học sinh nam và C53 cách chọn 3 học sinh nữ. Theo quy tắc nhân, ta có C73.C53=350 cách chọn 3 học sinh nam và 3 học sinh nữ tức là n(C)=350.Vậy P(C)=3509240,3788.

2. Sử dụng sơ đồ hình cây

HĐ2 trang 84 SGK Toán 10 Tập 2: Trong trò chơi "Vòng quay may mắn", người chơi sẽ quay hai bánh xe. Mũi tên ở bánh xe thứ nhất có thể dừng ở một trong hai vị trí: Loại xe 50 CC và Loại xe 110 cc. Mũi tên ở bánh xe thứ hai có thể dừng ở một trong bốn vị trí: màu đen, màu trắng, màu đỏ và màu xanh. Vị trí của mũi tên trên hai bánh xe sẽ xác định người chơi nhận được loại xe nào, màu gì. Phép thử T là quay hai bánh xe. Hãy vẽ sơ đồ hình cây mô tả các phần tử của không gian mẫu.

Lời giải:

Câu hỏi trang 85 Toán 10

Luyện tập 2 trang 85 SGK Toán 10 Tập 2: Trở lại trò chơi “Vòng quay may mắn” ở HĐ2. Tính xác suất để người chơi nhận: được loại xe 110 cc có màu trắng hoặc màu xanh.

Lời giải:

Dựa vào sơ đồ cây, ta thấy n(Ω)=8.

Gọi E là biến cố “Người chơi nhận được loại xe 110 cc có màu trắng hoặc màu xanh”.

Ta có n(E)=2. Vậy P(E)=n(E)n(Ω)=0,25.

Luyện tập 3 trang 85 SGK Toán 10 Tập 2: Trong một cuộc tổng điều tra dân số, điều tra viên chọn ngẫu nhiên một gia đình có ba người con và quan tâm giới tính của ba người con này.

a) Vẽ sơ đồ hình cây để mô tả các phần tử của không gian mẫu.

b) Giả thiết rằng khả năng sinh con trai và khả năng sinh con gái là như nhau. Tính xác 

suất để gia đình đó có một con trai và hai con gái.

Lời giải:

a) Theo bài ra, ta vẽ được sơ đồ hình cây mô tả các phần tử của không gian mẫu như sau: 

Đặt cách viết tắt: Gái = G, Trai = T. 

Các kết quả có thể là: GGG; GGT; GTG; GTT; TGG; TGT; TTG; TTT. 

Do đó: n(Ω) = {GGG; GGT; GTG; GTT; TGG; TGT; TTG; TTT}.

Vậy n(Ω) = 8.

b) Gọi biến cố A: “Gia đình đó có một con trai và hai con gái”.

Ta có: A = {GTG; TGG; GGT}. Do đó, n(A) = 3. 

Vậy PA=nAnΩ=38

3. Xác suất của biến cố đối

HĐ3 trang 85 SGK Toán 10 Tập 2: Cho E là một biến cố và Ω là không gian mẫu. Tính n(E¯) theo n(Ω) và n(E).

Lời giải:

Do E và E¯ là hai biến cố đối nên biến cố E¯ là phần bù của E trong Ω hay E¯=CΩE

Hay biến cố đối E¯ là tập tất cả các phần tử của Ω mà không là phần tử của E. 

Do đó ta có: n(E¯) + n(E) = n(Ω).

Vậy n(E¯) = n(Ω) – n(E). 

Câu hỏi trang 86 Toán 10

Luyện tập 4 trang 86 SGK Toán 10 Tập 2: Có ba hộp A, B, C. Hộp A có chứa ba thẻ mang số 1, số 2 và số 3. Hộp B chứa hai thẻ mang số 2 và số 3. Hộp C chứa hai thẻ mang số 1 và số 2. Từ mỗi hộp ta rút ra ngẫu nhiên một thẻ.

a) Vẽ sơ đồ hình cây để mô tả các phần tử của không gian mẫu.

b) Gọi M là biến cố: “Trong ba thẻ rút ra có ít nhất một thẻ số 1". Biến cố M¯  là tập con nào của không gian mẫu? 

c) Tính P(M) và P(M¯).

Lời giải:

a) Theo bài ra, ta vẽ được sơ đồ hình cây mô tả các phần tử của không gian mẫu như sau:

Ta có: Ω = {121; 122; 131; 132; 221; 222; 231; 232; 321; 322; 331; 332}.

Vậy n(Ω) = 12.

b) Biến cố M: “Trong ba thẻ rút ra có ít nhất một thẻ số 1”.

Do đó, biến cố M¯: "Trong ba thẻ rút ra không có thẻ số 1".

Khi đó: M¯= {222; 232; 322; 332}.

c) Ta có: n(M¯)= 4.

Do đó, PM¯=nM¯nΩ=412=13

Vì M¯ là biến cố đối của biến cố M nên PM¯=1PM.

Hay PM=1PM¯=113=23.

Vậy PM=23 và PM¯=13.

Vận dụng trang 86 SGK Toán 10 Tập 2: Giải bài toán trong tình huống mở đầu.

Lời giải:

Phép thử của bài toán là chọn ngẫu nhiên 6 số trong 45 số: 1; 2; 3; …; 45. Không gian mẫu Ω là tập hợp tất cả các tập con có 6 phần tử của tập {1; 2; 3; …; 45}. 

Do đó số phần tử của không gian mẫu là n(Ω) = C456

+ Gọi F là biến cố: “Bạn An trúng giải độc đắc”. 

Ta có: F là tập hợp có duy nhất 1 phần tử là tập {5; 13; 20; 31; 32; 35}. Do đó, n(F) = 1. 

Vậy xác suất để bạn An trúng giải độc đắc là PF=nFnΩ=1C456=18  145  060

+ Gọi G là biến cố: “Bạn An trúng giải nhất”.

Vì nếu bộ số của người chơi trùng với 5 số của bộ số trúng thưởng thì người chơi trúng giải nhất. 

Do đó G là tập hợp tất cả các tập con gồm 6 phần tử của tập {1; 2; 3; …; 45} có tính chất: năm phần tử của nó thuộc tập {5; 13; 20; 31; 32; 35} và một phần tử còn lại không thuộc tập {5; 13; 20; 31; 32; 35}. Nghĩa là phần tử còn lại này phải thuộc tập {1; 2; 3; …; 45} \ {5; 13; 20; 31; 32; 35} (tập hợp này gồm 45 – 6 = 39 phần tử).

Mỗi phần tử của G được hình thành từ hai công đoạn.

Công đoạn 1. Chọn 5 phần tử trong tập {5; 13; 20; 31; 32; 35}, có C65 cách chọn. 

Công đoạn 2. Chọn 1 phần tử trong 39 phần tử còn lại, có C391 cách chọn. 

Theo quy tắc nhân, số phần tử của G là: n(G) = C65.C391=234 (phần tử). 

Vậy xác suất để bạn An trúng giải nhất là PG=nGnΩ=234C456=391  357510.

Bài tập

Bài 9.6 trang 86 SGK Toán 10 Tập 2: Chọn ngẫu nhiên một gia đình có ba con và quan sát giới tính của ba người con này. Tính xác suất của các biến cố sau:

a) A: “Con đầu là gái”;

b) B: “Có ít nhất một người con trai”.

Lời giải:

Cách 1: Theo Luyện tập 3 trang 85 ta có:

n(Ω) = {GGG; GGT; GTG; GTT; TGG; TGT; TTG; TTT} và n(Ω) = 8.

a) Biến cố A: “Con đầu là gái”, do đó A = {GGG; GGT; GTG; GTT}. Suy ra n(A) = 4. 

Vậy PA=nAnΩ=48=12.  

b) Biến cố B: “Có ít nhất một người con trai”.

Suy ra biến cố B¯: “Không có người con trai nào”. 

Khi không có người con trai nào, tức cả ba người con đều là gái, do đó =B¯ {GGG} nên nB¯=1.

Do đó, PB¯=nB¯nΩ=18

Từ đó suy ra PB=1PB¯=118=78.

Cách 2: 

Mỗi người con sẽ là trai hoặc gái, nên 3 người con thì số khả năng xảy ra là: 2 . 2 . 2 = 8, hay n(Ω) = 8.

a) Con đầu là con gái vậy chỉ có 1 cách chọn.

Hai người con sau không phân biệt về giới tính nên có: 2 . 2 = 4 cách chọn.

Do đó, n(A) = 1 . 4 = 4. 

Vậy PA=nAnΩ=48=12

b) Biến cố B: “Có ít nhất một người con trai”.

Suy ra biến cố B¯: “Không có người con trai nào”. 

Khi không có người con trai nào, tức cả ba người con đều là gái, nên nB¯=1.

Do đó, PB¯=nB¯nΩ=18

Từ đó suy ra PB=1PB¯=118=78.

Bài 9.7 trang 86 SGK Toán 10 Tập 2: Một hộp đựng các tấm thẻ đánh số 10; 11; ....; 20. Rút ngẫu nhiên từ hộp hai tấm thẻ. Tính xác suất của các biến cố sau:

a) C: “Cả hai thẻ rút được đều mang số lẻ”;

b) D: “Cả hai thẻ rút được đều mang số chẵn”.

Lời giải:

Phép thử là chọn ngẫu nhiên 2 tấm thẻ từ hộp.

Các tấm thẻ đánh số 10; 11; ....; 20, nghĩa là có 20 – 10 + 1 = 11 (tấm thẻ).

Không gian mẫu là tập tất cả các tập con gồm 2 tấm thẻ trong 11 tấm thẻ. 

Do đó, n(Ω) = C112=55

a) Cả hai thẻ được rút ra đều mang số lẻ, nên 2 thẻ rút ra thuộc tập {11; 13; 15; 17; 19}. 

Do đó n(C) = C52=10

Vậy PC=nCnΩ=1055=211.

b) Cả hai thẻ được rút ra đều mang số chẵn, nên 2 thẻ rút ra thuộc tập {10; 12; 14; 16; 18; 20}.

Do đó n(D) = C62=15

Vậy PD=nDnΩ=1555=311.

Bài 9.8 trang 86 SGK Toán 10 Tập 2: Một chiếc hộp đựng 6 viên bi trắng, 4 viên bi đỏ và 2 viên bi đen. Chọn ngẫu nhiên ra 6 viên bi. Tính xác suất để trong 6 viên bi đó có 3 viên bi trắng, 2 viên bi đỏ và 1 viên bi đen.

Lời giải:

Tổng số viên bi trong hộp là 6 + 4 + 2 = 12 (viên bi). 

Chọn 6 viên bi trong 12 viên bi thì số cách chọn là: C126= 924 (cách). 

Do đó, n(Ω) = 924.

Gọi biến cố A: “Trong 6 viên bi đó có 3 viên bi trắng, 2 viên bi đỏ và 1 viên bi đen”.

Mỗi phần tử của A được hình thành từ ba công đoạn. 

+ Công đoạn 1. Chọn 3 viên bi trắng trong 6 viên bi trắng, số cách chọn: C63= 20.

+ Công đoạn 2. Chọn 2 viên bi đỏ trong 4 viên bi đỏ, số cách: C42= 6.

+ Công đoạn 3. Chọn 1 viên bi đen trong 2 viên bi đen, số cách: C21= 2.

Theo quy tắc nhân, tập A có 20 . 6 . 2 = 240 (phần tử) hay n(A) = 240. 

Vậy PA=nAnΩ=240924=2077

Bài 9.9 trang 86 SGK Toán 10 Tập 2: Gieo liên tiếp một con xúc xắc cân đối và một đồng xu cân đối.

a) Vẽ sơ đồ hình cây mô tả các phần tử của không gian mẫu.

b) Tính xác suất của các biến cố sau:

F: “Đồng xu xuất hiện mặt ngửa”;

G: “Đồng xu xuất hiện mặt sấp hoặc số chấm xuất hiện trên con xúc xắc là 5”. 

Lời giải:

a) Đồng xu và con xúc xắc cân đối nên các kết quả xảy ra có thể đồng khả năng. 

Gieo một con xúc xắc, các kết quả có thể xảy ra là 1, 2, 3, 4, 5, 6 chấm. 

Gieo một đồng xu, các kết quả có thể xảy ra là xuất hiện mặt sấp hoặc mặt ngửa.  

Kí hiệu S là mặt sấp, N là mặt ngửa.

Sơ đồ hình cây mô tả các phần tử của không gian mẫu là:

Các kết quả có thể là: S1; S2; S3; S4; S5; S6; N1; N2; N3; N4; N5; N6.

Do đó, Ω = {S1; S2; S3; S4; S5; S6; N1; N2; N3; N4; N5; N6}.

Vậy n(Ω) = 12.

b)

+ Biến cố F: “Đồng xu xuất hiện mặt ngửa”.

Các kết quả thuận lợi cho biến cố F là: N1; N2; N3; N4; N5; N6.

Do đó, F = {N1; N2; N3; N4; N5; N6}.

⇒ n(F) = 6.

Vậy PF=nFnΩ=612=12.

+ Biến cố G: “Đồng xu xuất hiện mặt sấp hoặc số chấm xuất hiện trên con xúc xắc là 5”. 

Các kết quả thuận lợi cho biến cố G là: S1; S2; S3; S4; S5; S6; N5.

Do đó, G = {S1; S2; S3; S4; S5; S6; N5}.

⇒ n(G) = 7.

Vậy PG=nGnΩ=712.

Câu hỏi trang 87 Toán 10

Bài 9.10 trang 87 SGK Toán 10 Tập 2: Trên một phố có hai quán ăn X, Y. Ba bạn Sơn, Hải, Văn mỗi người chọn ngẫu nhiên một quán ăn.

a) Vẽ sơ đồ hình cây mô tả các phần tử của không gian mẫu.

b) Tính xác suất của biến cố “Hai bạn vào quán X, bạn còn lại vào quán Y”.

Lời giải:

a) Theo bài ra ta vẽ được sơ đồ hình cây mô tả các phần tử của không gian mẫu như sau:

Các kết quả có thể là: XXX; XXY; XYX; XYY; YXX; YXY; YYX; YYY. 

Do đó, Ω = {XXX; XXY; XYX; XYY; YXX; YXY; YYX; YYY}. 

Vậy n(Ω) = 8.

b) Gọi biến cố A: “Hai bạn vào quán X, bạn còn lại vào quán Y”.

Các kết quả thuận lợi cho biến cố A: XXY; XYX; YXX.

Do đó A = {XXY; XYX; YXX}.

⇒ n(A) = 3.

Vậy PA=nAnΩ=38.

Bài 9.11 trang 87 SGK Toán 10 Tập 2: Gieo lần lượt hai con xúc xắc cân đối. Tính xác suất để ít nhất một con xúc xắc xuất hiện mặt 6 chấm.

Lời giải:

Hai con xúc xắc cân đối nên các kết quả xảy ra có thể đồng khả năng. 

Gieo một con xúc xắc, các kết quả có thể xảy ra là 1, 2, 3, 4, 5, 6 chấm. 

Vì gieo lần lượt hai con xúc xắc cân đối, nên theo quy tắc nhân, số phần tử của không gian mẫu là: n(Ω) = 6 . 6 = 36.

Gọi biến cố A: “Ít nhất một con xúc xắc xuất hiện mặt 6 chấm”.

Để ít nhất một con xúc xắc xuất hiện mặt 6 chấm thì có các khả năng là:

+ Trường hợp 1: một con 6 chấm, một con không phải 6 chấm, số khả năng: 1 . 5 . 2 = 10.

(Do gieo lần lượt nên các kết quả: 61; 62; 63; 64; 65; 16; 26; 36; 46; 56).

+ Trường hợp 2: cả hai con 6 chấm, số khả năng: 1.

Vì các trường hợp là rời nhau, nên theo quy tắc cộng, ta có: n(A) = 10 + 1 = 11. 

Vậy PA=nAnΩ=1136.

Bài 9.12 trang 87 SGK Toán 10 Tập 2: Màu hạt của đậu Hà Lan có hai kiểu hình là màu vàng và màu xanh tương ứng với hai loại gene là gene trội A và gene lặn a. Hình dạng hạt của đậu Hà Lan có hai kiểu hình là hạt trơn và hạt nhăn tương ứng với hai loại gene là gene trội B và gene lặn b. Biết rằng, cây con lấy ngẫu nhiên một gene từ cây bố và một gene từ cây mẹ.

Phép thử là cho lai hai loại đậu Hà Lan, trong đó cả cây bố và cây mẹ đều có kiểu gene là (Aa, Bb) và kiểu hình là hạt màu vàng và trơn. Giả sử các kết quả có thể là đồng khả năng. Tính xác suất để cây con cũng có kiểu hình là hạt màu vàng và trơn.

Lời giải:

Phép thử là cho lai hai loại đậu Hà Lan, trong đó cả cây bố và cây mẹ đều có kiểu gene là (Aa, Bb) và kiểu hình là hạt màu vàng và trơn.

Không gian mẫu được mô tả trong bảng sau:

 

AB

Ab

aB

ab

AB

AABB

AABb

AaBB

AaBb

Ab

AABb

AAbb

AaBb

Aabb

aB

AaBB

AaBb

aaBB

aaBb

ab

AaBb

Aabb

aaBb

aabb

 

Vậy n(Ω) = 16.

Gọi biến cố A: “cây con cũng có kiểu hình là hạt màu vàng và trơn”.

Để cây con có kiểu hình là hạt màu vàng và trơn thì phải xuất hiện gene A và B. 

Các kết quả thuận lợi cho biến cố A: AABB (1); AABb (2); AaBB (2); AaBb (4).

⇒ n(A) = 1 + 2 + 2 + 4 = 9. 

Vậy PA=nAnΩ=916.

Đánh giá

0

0 đánh giá