Toán 10 Cánh diều Bài 1: Số gần đúng. Sai số

849

Toptailieu.vn giới thiệu Giải bài tập Toán lớp 10 Bài 1: Số gần đúng. Sai số sách Cánh diều giúp học sinh xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 10 Tập 2. Mời các bạn đón xem:

Toán 10 Cánh diều Bài 1: Số gần đúng. Sai số

Câu hỏi trang 21 Toán 10

Câu hỏi khởi động trang 21 Toán lớp 10 Tập 2: Trái Đất với tên gọi “Hành tinh xanh” là ngôi nhà chung của nhân loại. Trong Hệ Mặt Trời, Trái Đất là hành tinh thứ ba tính từ Mặt Trời, đồng thời cũng là hành tinh lớn nhất trong các hành tinh đất đá xét về bán kính, khối lượng và mật độ vật chất.

Trái Đất có diện tích toàn bộ bề mặt là 510,072 triệu km2.

(Nguồn: https://vi.wikipedia.org)

 (ảnh 1)

Con số 510,072 (triệu km2) là số chính xác hay số gần đúng?

Lời giải:

Con số 510,072 (triệu km2) là một số gần đúng vì ta không thể đo đạc được chính xác diện tích toàn bộ bề mặt Trái Đất.

1. Số gần đúng

Hoạt động 1 trang 21 Toán lớp 10 Tập 2: Hóa đơn tiền điện tháng 4/2021 của gia đình bác Mai là 763 951 đồng. Trong thực tế, bác Mai đã thanh toán (hóa đơn) bằng tiền mặt cho người thu tiền điện số tiền là 764 000 đồng. Tại sao bác Mai không thể thanh toán bằng tiền mặt cho người thu tiền điện số tiền chính xác là 763 951 đồng?

Lời giải:

Bác Mai không thể thanh toán bằng tiền mặt cho người thu tiền điện số tiền chính xác là 763 951 đồng vì tiền mặt của Việt Nam không có các đồng tiền có mệnh giá 1 đồng, 50 đồng và 900 đồng, do đó sử dụng tiền giấy để thanh toán thì không có các tờ tiền để tổng số tiền là 763 951 đồng.

2. Sai số của số gần đúng

Hoạt động 2 trang 22 Toán lớp 10 Tập 2: Một bồn hoa có dạng hình tròn với bán kính là 0,8 m

a) Viết công thức tính diện tích S của bồn hoa theo π và bán kính 0,8 m.

b) Khi tính diện tích của bồn hoa, bạn Ngân lấy một giá trị gần đúng của π là 3,1 và được kết quả là:

3,1 . (0,8)2 = 1,984 (m2).

Giá trị |S – 1,984| biểu diễn điều gì?

Lời giải:

a) Vì bồn hoa có dạng hình tròn với bán kính 0,8 m nên diện tích bồn hoa là:

S = π . (0,8)2 = 0,64π (m2).

b) Ta có 1,984 là giá trị gần đúng của diện tích S của bồn hoa.

Do đó giá trị |S – 1,984| chính là khoảng chênh lệch của diện tích đúng của bồn hoa và diện tích gần đúng của bồn hoa. Ta gọi giá trị này là sai số tuyệt đối của số gần đúng 1,984.

Câu hỏi trang 23 Toán 10

Hoạt động 3 trang 23 Toán lớp 10 Tập 2: Hãy ước lượng sai số tuyệt đối S1 ở Ví dụ 1.

Lời giải:

Để ước lượng sai số tuyệt đối trên, ta làm như sau:

Do 3,1 < π < 3,15 nên 3,1 . (0,8)2 < π . (0,8)2 < 3,15 . (0,8)2.

Suy ra 1,984 < S < 2,016.

Vậy S1 = (S - S1)<2,016 - 1,984 = 0,032.

Ta nói: Kết quả của bạn Ngân có sai số tuyệt đối không vượt quá 0,032 hay có độ chính xác là 0,032

Hoạt động 4 trang 23 Toán lớp 10 Tập 2: Các nhà thiên văn tính được thời gian để Trái Đất quay một vòng quanh Mặt Trời là 365 ngày  ngày. Bạn Hùng tính thời gian đi bộ một vòng quanh sân vận động của trường khoảng 15 phút ± 1 phút. Trong hai phép đo trên, phép đo nào chính xác hơn?

 (ảnh 1)

Lời giải:

Phép đo của các nhà thiên văn có sai số tuyệt đối không vượt quá 14 ngày, có nghĩa là không vượt quá 360 phút. Phép đo của Hùng có sai số tuyệt đối không quá 1 phút. Nếu chỉ so sánh 360 phút và 1 phút thì có thể dẫn đến hiểu rằng phép đo của bạn Hùng chính xác hơn phép đo của các nhà thiên văn. Tuy nhiên, 14 ngày hay 360 phút là độ chính xác của phép đo một chuyển động trong 365 ngày, còn 1 phút là độ chính xác của phép đo một chuyển động trong 15 phút. So sánh hai tỉ số 14365=11460=0,0006849... và 115=0,0666...., ta thấy rằng phép đo của các nhà thiên văn chính xác hơn nhiều.

3. Số quy tròn. Quy tròn số đúng và số gần đúng

Câu hỏi trang 25 Toán 10

Hoạt động 5 trang 25 Toán lớp 10 Tập 2: Quy tròn số 3,141 đến hàng phần trăm rồi tính sai số tuyệt đối của số quy tròn.

Lời giải:

Quy tròn số 3,141 đến hàng phần trăm ta được số 3,14.

Sai số tuyệt đối của số quy tròn là ∆ = |3,141 – 3,14| = 0,001 < 0,005. Do vậy, số quy tròn 3,14 là số gần đúng của số 3,141 với độ chính xác 0,005.

Hoạt động 6 trang 25 Toán lớp 10 Tập 2: Cho số gần đúng a = 1,2345 với độ chính xác 0,005. Hãy đọc hai yêu cầu sau và cho biết hai yêu cầu đó khác nhau như thế nào:

a) Quy tròn số gần đúng a = 1,2345 đến hàng phần trăm;

b) Quy tròn số gần đúng a = 1,2345.

Lời giải:

Yêu cầu ở câu a) Đề bài đã cho rõ hàng quy tròn, ta chỉ cần quy tròn số a = 1,2345 đến hàng phần trăm.

Yêu cầu ở câu b) Đề bài chưa cho hàng quy tròn, ta cần xem xét độ chính xác, từ đó mới biết được hàng quy tròn để quy tròn số gần đúng a = 1,2345.

Luyện tập 1 trang 25 Toán lớp 10 Tập 2: Hãy viết số quy tròn của số gần đúng a = 28,4156 biết  (ảnh 1)

Lời giải:

  (ảnh 1) nên độ chính xác d = 0,0001.

Do 0,00001 < d = 0,0001 < 0,001 nên hàng thấp nhất mà d nhỏ hơn một đơn vị của hàng đó là hàng phần nghìn. Vì thế, ta quy tròn số a đến hàng phần nghìn theo quy tắc quy tròn.

Vậy số quy tròn của a là 28,416

Câu hỏi trang 26 Toán 10

Hoạt động 7 trang 26 Toán lớp 10 Tập 2: Như đã biết, nếu số đúng là số nguyên hoặc số thập phân thì ta có thể tìm dễ dàng số gần đúng với độ chính xác cho trước bằng cách quy tròn về hàng thích hợp. Tuy nhiên, việc biểu diễn số thực về dạng số nguyên hoặc số thập phân trong thực tiễn là không đơn giản. Ngày nay, ta có thể sử dụng máy tính cầm tay hoặc các phương tiện tính toán hiện đại để giải quyết vấn đề đó.

 

Sử dụng máy tính cầm tay, tính 37.14 (trong kết quả lấy bốn chữ số ở phần thập phân).

Lời giải:

Để thực hiện phép tính trên ra kết quả có bốn chữ số ở phần thập phân, ta có thể làm như sau:

 (ảnh 1)

Luyện tập 2 trang 26 Toán lớp 10 Tập 2: Sử dụng máy tính cầm tay, tính 153:5-2 (trong kết quả lấy hai chữ số ở phần thập phân)

Lời giải:

Để thực hiện phép tính trên ra kết quả có hai chữ số ở phần thập phân, ta có thể làm như sau:

 (ảnh 1)

Luyện tập 3 trang 26 Toán lớp 10 Tập 2: Hãy tìm hiểu khối lượng của Trái Đất, Mặt Trời và viết kết quả dưới dạng số gần đúng

Lời giải:

Theo https://vi.wikipedia.org:

+ Khối lượng của Trái Đất khoảng 5,9722 × 1024 (kg).

+ Khối lượng của Mặt Trời là (1,98855 ± 0,00025) × 1030 kg.

Bài tập

Bài 1 trang 26 Toán lớp 10 Tập 2: Quy tròn số – 3,2475 đến hàng phần trăm. Số gần đúng nhận được có độ chính xác là bao nhiêu?

Lời giải:

Quy tròn số – 3,2475 đến hàng phần trăm ta được – 3,25.

Sai số tuyệt đối là ∆ = |– 3,2475 – (– 3,25)| = 0,0025 < 0,005.

Vậy số gần đúng – 3,25 có độ chính xác là d = 0,005.

(Ta có thể tìm độ chính xác bằng cách lấy nửa đơn vị của hàng quy tròn).

Bài 2 trang 26 Toán lớp 10 Tập 2: Viết số quy tròn của mỗi số gần đúng sau với độ chính xác d:

a, 30,2376 với d = 0,009

b, 2,3512082 với d = 0,008

Bài 3 trang 26 Toán lớp 10 Tập 2: Ta đã biết 1 inch (kí hiệu là in) là 2,54 cm. Màn hình của một chiếc ti vi có dạng hình chữ nhật với độ dài đường chéo là 32 in, tỉ số giữa chiều dài và chiều rộng của màn hình là 16 : 9. Tìm một giá trị gần đúng (theo đơn vị inch) của chiều dài màn hình ti vi và tìm sai số tương đối, độ chính xác của số gần đúng đó.

Lời giải:

Ta mô phỏng màn hình ti vi có hình chữ nhật ABCD như sau:

Ta đã biết 1 inch (kí hiệu là in) là 2,54 cm. Màn hình của một chiếc ti vi (ảnh 1)

Ta có: AC = 32 in, AB là chiều dài, BC là chiều rộng với AB : BC = 16 : 9.

Gọi chiều dài của ti vi là x (in, x > 0) hay AB = x, khi đó chiều rộng của ti vi là BC=916x

Sử dụng định lí Pythagore, ta có phương trình: x2+916x2=322 (*).

Giải phương trình (*), ta có:

(*) x2+81256x2=1024337256x2=1024x2=262144337

Do x > 0 nên x = 512337.

Vậy chiều dài của chiếc ti vi là 512337=27,89041719... (in).

Quy tròn số 512337 đến hàng phần trăm được 27,89.

Ta có độ chính xác d = 0,005 (nửa đơn vị hàng quy tròn).

Vậy sai số tương đối δa0,00527,890,02%.

Đánh giá

0

0 đánh giá