Trên màn hình ra đa của đài kiểm soát không lưu sân bay A có hệ trục toạ độ

878

Với giải Bài 12 trang 104 Toán lớp 10 Tập 2 Cánh diều chi tiết trong Bài tập cuối chương 7 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem:

Giải bài tập Toán 10 Bài 12 trang 104 Toán lớp 10 Tập 2

Bài 12 trang 104 Toán lớp 10 Tập 2: Trên màn hình ra đa của đài kiểm soát không lưu sân bay A có hệ trục toạ độ Oxy (Hình 65), trong đó đơn vị trên mỗi trục tính theo ki-lô-mét và đài kiểm soát được coi là gốc toạ độ 0(0 ; 0). Nếu máy bay bay trong phạm vi cách đài kiểm soát 500 km thì sẽ hiển thị trên màn hình ra đa như một điểm chuyển động trong mặt phẳng với hệ trục toạ độ Oxy.

Trên màn hình ra đa của đài kiểm soát không lưu sân bay A có hệ trục toạ độ (ảnh 1)

Một máy bay khởi hành từ sân bay B lúc 14 giờ. Sau thời gian t (giờ), vị trí của máy bay được xác định bởi điểm M có toạ độ như sau:

Trên màn hình ra đa của đài kiểm soát không lưu sân bay A có hệ trục toạ độ (ảnh 2)

a) Tìm vị trí của máy bay lúc 14 giờ 30 phút. Thời điểm này máy bay đã xuất hiện trên màn hình ra đa chưa?

b) Lúc mấy giờ máy bay bay gần đài kiểm soát không lưu nhất? Tính khoảng cách giữa máy bay và đài kiểm soát không lưu lúc đó.

c) Máy bay ra khỏi màn hình ra đa vào thời gian nào?.

Lời giải:

a) Lúc 14 giờ 30 phút máy bay đã bay được: 14 giờ 30 phút – 14 giờ = 30 phút = 0,5 giờ.

Trên màn hình ra đa của đài kiểm soát không lưu sân bay A có hệ trục toạ độ (ảnh 6)

Vậy vị trí của máy bay lúc 14 giờ 30 phút ở tại điểm có tọa độ E(300; 400).

Ta có: OE=300;400 nên OE=3002+4002=500, hay khoảng cách từ đài kiểm soát không lưu O đến vị trí E của máy bay lúc 14 giờ 30 phút là 500 km.

Vậy thời điểm này máy bay đã xuất hiện trên màn hình ra đa.

Trên màn hình ra đa của đài kiểm soát không lưu sân bay A có hệ trục toạ độ (ảnh 7)

Gọi H là hình chiếu của O đến đường thẳng d. Khi đó OH là khoảng cách ngắn nhất từ O đến H hay chính là tại vị trí H máy bay bay gần đài kiểm soát không lưu nhất.

Ta có H thuộc d nên tọa độ H1600314003t;1900314003t.

Khi đó, OH=1600314003t;1900314003t.

Lại có đường thẳng d có vectơ chỉ phương là ud=3140014003;14003=1;1.

Vì OH ⊥ d nên OH.ud=01600314003t.1+1900314003t.1=0.

Khi đó H(– 50; 50).

Do đó, OH = 502.

Ta có: t = 54 giờ = 1 giờ 15 phút.

Vậy máy bay bay gần đài kiểm soát không lưu nhất lúc: 14 giờ + 1 giờ 15 phút = 15 giờ 15 phút và khoảng cách giữa máy bay và đài kiểm soát không lưu lúc này là 502 km.

c) Gọi K1600314003t;1900314003t là vị trí máy bay ra khỏi màn hình ra đa.

Khi đó OK > 500 km.

Ta có: OK=1600314003t;1900314003t

Do đó, OK=1600314003t2+1900314003t2.

Hay 1600314003t2+1900314003t2>500

Suy ra 1600314003t2+1900314003t2>250000

39200009t298000009t+39200009>0

Trên màn hình ra đa của đài kiểm soát không lưu sân bay A có hệ trục toạ độ (ảnh 8)

Ta có t = 12 giờ = 30 phút.

Vậy máy bay bay ra khỏi màn hình ra đa vào khoảng thời gian từ 14 giờ đến trước 14 giờ 30 phút và sau 16 giờ.

Xem thêm các bài giải Toán 10 Kết nối tri thức hay, chi tiết khác:

Bài 1 trang 103 Toán lớp 10 Tập 2: Trong mặt phẳng tọa độ Oxy, cho A(3; 4); B(2; 5). Tọa độ của  là:

Bài 2 trang 103 Toán lớp 10 Tập 2: Vectơ nào sau đây là một vectơ pháp tuyến của đường thẳng

Bài 3 trang 103 Toán lớp 10 Tập 2: Tọa độ tâm I của đường tròn (C): (x + 6)2 + (y – 12)2 = 81 là:

Bài 4 trang 103 Toán lớp 10 Tập 2: Khoảng cách từ điểm A(1; 1) đến đường thẳng Δ: 3x + 4y + 13 = 0 bằng:

Bài 5 trang 103 Toán lớp 10 Tập 2: Trong mặt phẳng tọa độ Oxy, cho tam giác MNP có M(2; 1), N(– 1; 3), P(4; 2).

Bài 6 trang 103 Toán lớp 10 Tập 2: Lập phương trình tổng quát và phương trình tham số của đường thẳng d

Bài 7 trang 103 Toán lớp 10 Tập 2: Lập phương trình đường tròn (C) trong mỗi trường hợp sau:

Bài 8 trang 104 Toán lớp 10 Tập 2: Quan sát Hình 64 và thực hiện các hoạt động sau:

Bài 9 trang 104 Toán lớp 10 Tập 2: Cho hai đường thẳng: 

Bài 10 trang 104 Toán lớp 10 Tập 2: Cho biết mỗi đường conic có phương trình dưới đây là đường conic dạng

Bài 11 trang 104 Toán lớp 10 Tập 2: Cho tam giác AF1F2, trong đó A(0; 4), F1(– 3; 0), F2(3; 0).

Đánh giá

0

0 đánh giá