Xét mệnh đề chứa biến P(n): 1 + 3 + 5 + ... + (2n – 1) = n^2 với n là số nguyên dương

334

Với giải Hoạt động trang 23 Chuyên đề Toán 10 Cánh diều chi tiết trong Bài 3: Phương pháp quy nạp toán học giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Chuyên đề Toán 10. Mời các bạn đón xem:

Giải bài tập Chuyên đề Toán lớp 10 Bài 3: Phương pháp quy nạp toán học

Hoạt động trang 23 Chuyên đề Toán 10: Xét mệnh đề chứa biến P(n) : "1 + 3 + 5 + ... + (2n – 1) = n2" với n là số nguyên dương.

a) Chứng tỏ rằng P(1) là mệnh đề đúng.

b) Với k là một số nguyên dương tuỳ ý mà P(k) là mệnh đề đúng, cho biết 1 + 3 + 5 + ... + (2k – 1) bằng bao nhiêu.

c) Với k là một số nguyên dương tuỳ ý mà P(k) là mệnh đề đúng, chứng tỏ rằng P(k+1) cũng là mệnh đề đúng bằng cách chỉ ra k2 + [2(k + 1) – 1] = (k+1)2.

Lời giải:

a) Ta có P(1): "1 = 12". Mệnh đề này đúng vì 12 = 1.

b) Với k là một số nguyên dương tuỳ ý mà P(k) là mệnh đề đúng thì 1 + 3 + 5 + ... + (2k – 1) = k2.

c) Khi P(k) là mệnh đề đúng. Ta có:

P(k+1) = 1 + 3 + 5 + ... + (2k – 1) + [2(k+1) – 1] = P(k) + [2(k+1) – 1]

= k2 + [2(k+1) – 1] = k2 + (2k + 2 – 1) = k2 + 2k + 1 = (k+1)2

Vậy P(k+1) cũng là mệnh đề đúng.

 

Xem thêm lời giải bài tập Chuyên đề học tập Toán 10 Cánh diều hay, chi tiết khác:

Từ khóa :
Giải bài tập
Đánh giá

0

0 đánh giá