Với Giải SBT Toán 10 Tập 2 trong Bài 3: Tổ hợp Sách bài tập Toán lớp 10 Tập 2 Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 10.
SBT Toán 10 Cánh diều Bài 3: Tổ hợp
A. Tất cả kết quả của việc lấy k phần tử từ n phần tử của tập hợp A và sắp xếp chúng theo một thứ tự nào đó.
B. Một tập con gồm k phần tử được lấy ra từ n phần tử của A.
C. Một kết quả của việc lấy k phần tử từ n phần tử của tập hợp A và sắp xếp chúng theo một thứ tự nào đó.
D. Tất cả tập con gồm k phần tử được lấy ra từ n phần tử của A.
Lời giải:
Đáp án đúng là B
Cho tập hợp A gồm n phần tử và một số nguyên k với 1 ≤ k ≤ n.
Mỗi tập con gồm k phần tử được lấy ra từ n phần tử của A được gọi là một tổ hợp chập k của n phần tử đó.
Vậy ta chọn phương án B.
A. .
B. .
C. .
D. .
Lời giải:
Đáp án đúng là B
Cho k, n là các số nguyên dương, k ≤ n.
Ta có .
Do đó phương án A, D đúng.
Theo tính chất của các số , ta có .
Do đó phương án B đúng.
Suy ra phương án C sai.
Vậy ta chọn phương án C.
Bài 22 trang 13 SBT Toán 10: Tính số đoạn thẳng có hai đầu mút là 2 trong 10 điểm phân biệt.
Lời giải:
Mỗi đoạn thẳng tương ứng với một cặp điểm (không tính thứ tự) chọn trong 10 điểm phân biệt đã cho.
Mỗi cách chọn 2 trong 10 điểm phân biệt là một tổ hợp chập 2 của 10.
Số cách chọn 2 trong 10 điểm phân biệt là: = 45 (cách chọn).
Vậy có 45 đoạn thẳng thỏa mãn yêu cầu bài toán.
Bài 23 trang 13 SBT Toán 10: Cho n điểm phân biệt (n > 1). Biết rằng, số đoạn thẳng có hai đầu mút là 2 trong n điểm đã cho bằng 78. Tìm n.
Lời giải:
Số đoạn thẳng có 2 đầu mút là 2 trong n điểm đã cho là: .
Theo đề, ta có số đoạn thẳng có hai đầu mút là 2 trong n điểm đã cho bằng 78.
Tức là, = 78.
Suy ra = 78.
Khi đó = 78.
Do đó n2 – n = 156.
Vì vậy n2 – n – 156 = 0.
Suy ra n = 13 hoặc n = –12.
Vì n > 1 nên ta nhận n = 13.
Vậy n = 13 thỏa mãn yêu cầu bài toán.
Bài 24 trang 14 SBT Toán 10: Tính số đường chéo của một đa giác lồi có 12 đỉnh.
Lời giải:
Đa giác lồi có 12 đỉnh thì có 12 cạnh.
Số cách chọn 2 đỉnh trong 12 đỉnh là một tổ hợp chập 2 của 12.
Suy ra số cách chọn 2 đỉnh trong 12 đỉnh là: (cách chọn).
Vậy số đường chéo cần tìm là -12 = 54.
Lời giải:
Số đường chéo của đa giác lồi n đỉnh là một cặp đỉnh (không tính n cạnh) được chọn trong n đỉnh của đa giác lồi nên ta có - n = - n.
Theo đề, ta có số đường chéo của đa giác đó là 170.
Tức là, - n = 170.
Suy ra - n = 170.
Khi đó (n – 1).n – 2n = 340.
Vì vậy n2 – 3n – 340 = 0.
Suy ra n = 20 hoặc n = –17.
Vì n > 3 nên ta nhận n = 20.
Vậy n = 20 là giá trị cần tìm.
Bài 26 trang 14 SBT Toán 10: Bạn Nam đến cửa hàng mua 2 chiếc ghế loại A. Tại cửa hàng, ghế loại A màu xanh có 20 chiếc và ghế loại A màu đỏ có 15 chiếc. Hỏi bạn Nam có bao nhiêu cách chọn mua 2 chiếc ghế loại A?
Lời giải:
Cửa hàng đó có tất cả 20 + 15 = 35 (chiếc ghế).
Mỗi cách chọn 2 chiếc ghế trong tổng số 35 chiếc là một tổ hợp chập 2 của 35.
Vậy số cách chọn 2 chiếc ghế loại A trong tổng số 35 chiếc ghế là: =595.
Bài 27 trang 14 SBT Toán 10: Chứng minh rằng:
b) với 0 ≤ k ≤ n.
Lời giải:
a) Ta có
.
Vậy với 1 ≤ k ≤ n.
b) Ta có
.
Vậy với 0 ≤ k ≤ n.
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.