Biểu đồ đoạn thẳng ở Hình 4 cho biết kết quả thi Ngoại ngữ ở câu lạc bộ của Dũng

885

Với Giải SBT Toán 10 Tập 2 trong Bài 3: Các số liệu đặc trưng đo mức độ phân tán cho mẫu số liệu không ghép nhóm Sách bài tập Toán lớp 10 Tập 2 Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 10.

Biểu đồ đoạn thẳng ở Hình 4 cho biết kết quả thi Ngoại ngữ ở câu lạc bộ của Dũng

Bài 19 trang 39 SBT Toán 10Biểu đồ đoạn thẳng ở Hình 4 cho biết kết quả thi Ngoại ngữ ở câu lạc bộ của Dũng (đường nét liền) và Hoàng (đường nét đứt đậm) qua 9 lần kiểm tra.

Biểu đồ đoạn thẳng ở Hình 4 cho biết kết quả thi Ngoại ngữ ở câu lạc bộ của Dũng

a) Viết mẫu số liệu thống kê kết quả thi ngoại ngữ của Dũng và Hoàng nhận được từ biểu đồ ở Hình 4.

b) Tìm khoảng biến thiên và khoảng tứ phân vị của mỗi mẫu số liệu đó.

c) Tính phương sai và độ lệch chuẩn của hai mẫu số liệu đó. Cho biết kết quả thi của bạn nào ổn định hơn?

Lời giải:

a) Mẫu số liệu thống kê kết quả thi ngoại ngữ của Dũng là:

8 9 7 9 7 8 8 7 9 (1)

Mẫu số liệu thống kê kết quả thi ngoại ngữ của Hoàng là:

6 10 8 8 7 9 6 9 8 (2)

b) Xét mẫu số liệu (1):

⦁ Trong mẫu số liệu (1), số điểm lớn nhất là 9 và số điểm thấp nhất là 7.

Do đó khoảng biến thiên của mẫu số liệu (1) là: R = xmax – xmin = 9 – 7 = 2.

⦁ Sắp xếp mẫu số liệu (1) theo thứ tự không giảm, ta được dãy:

7 7 7 8 8 8 9 9 9

Trung vị của mẫu số liệu trên là: 8.

Trung vị của dãy 7; 7; 7; 8 là: 7+72= 7.

Trung vị của dãy 8; 9; 9; 9 là: 9+92= 9.

Vì vậy Q1 = 7; Q2 = 8; Q3 = 9.

Do đó khoảng tứ phân vị của mẫu số liệu (1) là: ∆Q = Q3 – Q1 = 9 – 7 = 2.

Xét mẫu số liệu (2):

⦁ Trong mẫu số liệu (2), số điểm lớn nhất là 10 và số điểm thấp nhất là 6.

Do đó khoảng biến thiên của mẫu số liệu (1) là: R = xmax – xmin = 10 – 6 = 4.

⦁ Sắp xếp mẫu số liệu (2) theo thứ tự không giảm, ta được dãy:

6 6 7 8 8 8 9 9 10

Trung vị của mẫu số liệu trên là: 8.

Trung vị của dãy 6; 6; 7; 8 là: 6+72= 6,5.

Trung vị của dãy 8; 9; 9; 10 là: 9+92=9.

Vì vậy Q1 = 6,5; Q2 = 8; Q3 = 9.

Do đó khoảng tứ phân vị của mẫu số liệu (2) là: ∆Q = Q3 – Q1 = 9 – 6,5 = 2,5.

Vậy ta có:

⦁ Khoảng biến thiên của mẫu số liệu (1) và (2) lần lượt là 2 và 4.

⦁ Khoảng tứ phân vị của mẫu số liệu (1) và (2) lần lượt là 2 và 2,5.

c) Gọi kết quả trung bình của bạn Dũng và bạn Hoàng lần lượt là x¯D,x¯H. Ta có:

⦁ x¯D=7.3+8.3+9.39=8 (điểm).

⦁ x¯H=6.2+7+8.3+9.2+109=719 (điểm).

Gọi phương sai tương ứng với mẫu số liệu (1) và (2) lần lượt là sD2,sH2. Ta có:

⦁ sD2=3.782+3.882+3.9829=23.

⦁ Biểu đồ đoạn thẳng ở Hình 4 cho biết kết quả thi Ngoại ngữ ở câu lạc bộ của Dũng

Độ lệch chuẩn của mẫu số liệu (1) là: sD=sD2=23=63.

Độ lệch chuẩn của mẫu số liệu (2) là: sH=sH2=13481=1349.

Do sD2=23<sH2=13481.

Nên bạn Dũng có kết quả thi ổn định hơn bạn Hoàng.

Xem thêm lời giải sách bài tập Toán lớp 10 Cánh diều với cuộc sống hay, chi tiết khác:

Bài 14 trang 37 SBT Toán 10Cho mẫu số liệu: 21 22 23 24 25

Bài 15 trang 38 SBT Toán 10: Biểu đồ đoạn thẳng ở Hình 2 biểu diễn thu nhập bình quân đầu người/năm của Việt Nam

Bài 16 trang 38 SBT Toán 10Biểu đồ đoạn thẳng ở Hình 3 biểu diễn số lượt khách vào một cửa hàng trong ngày đầu khai trương

Bài 17 trang 38 SBT Toán 10Cho mẫu số liệu: 1 11 13 15 17 21

Bài 18 trang 38 SBT Toán 10Kết quả dự báo nhiệt độ cao nhất trong 10 ngày liên tiếp ở Nghệ An cuối tháng 01

 

Đánh giá

0

0 đánh giá