Cho đường tròn (C) tâm F1, bán kính r và một điểm F2 thoả mãn F1F2 = 4r a) Chứng tỏ rằng tâm của các đường tròn đi qua F2 và tiếp xúc với (C) nằm trên một đường hypebol (H).

516

Với giải Bài 3 trang 55 Chuyên đề Toán 10 Chân trời sáng tạo chi tiết trong Bài 6: Hypebol giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Chuyên đề Toán 10. Mời các bạn đón xem:

Giải bài tập Chuyên đề Toán lớp 10 Bài 6: Hypebol

Bài 3 trang 55 Chuyên đề Toán 10: Cho đường tròn (C) tâm F1, bán kính r và một điểm F2 thoả mãn F1F2 = 4r

a) Chứng tỏ rằng tâm của các đường tròn đi qua F2 và tiếp xúc với (C) nằm trên một đường hypebol (H).

b) Viết phương trình chính tắc và tìm tâm sai của (H).

Lời giải:

a) Gọi (C'; r') là đường tròn đi qua F2 và tiếp xúc với (C);

I(x; y) là tâm của đường tròn đi qua F2 và tiếp xúc với (C).

Vì F2 nằm ngoài (C) nên (C') tiếp xúc ngoài với (C) hoặc (C') tiếp xúc trong với (C) và (C) nằm trong (C').

+) Nếu (C') tiếp xúc ngoài với (C) thì r' + r = IF1  IF2 + r = IF1  IF1 – IF2 = r

+) Nếu (C') tiếp xúc trong với (C) và (C) nằm trong (C') thì r' – r = IF1  IF2 – r = IF1

 IF2 – IF1 = r.

Vậy ta luôn có |IF2 – IF1| = r trong cả hai trường hợp

 I nằm trên hypebol có hai tiêu điểm là F1, F2 và độ dài trục thực là r.

b) Chọn hệ trục toạ độ sao cho gốc toạ độ trùng với trung điểm của F1F2 và F1, F2 đều nằm trên trục Ox.

Giả sử phương trình chính tắc của hypebol này là x2a2-y2b2=1 (a > 0, b > 0).

Khi đó ta có 2a = r, suy ra a = r2

F1F2 = 4r, suy ra c = 2r, suy ra b2=c2-a2=(2r)2-(r2)2=15r24.

Vậy phương trình chính tắc của hypebol này là x2r24-y215r24=1.

Xem thêm các bài giải Chuyên đề Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Khám phá 1 trang 50 Chuyên đề Toán 10: Cho hypebol (H) với phương trình chính tắc  và điểm M(x0; y0) nằm trên (H). Các điểm M1(–x0; y0), M2(x0; –y0), M3(–x0; –y0) có thuộc (H) không?

Thực hành 1 trang 51 Chuyên đề Toán 10: Viết phương trình chính tắc của hypebol có kích thước của hình chữ nhật cơ sở là 8 và 6. Xác định đỉnh, tiêu điểm, tiêu cự, độ dài trục của hypebol này.

Vận dụng 1 trang 51 Chuyên đề Toán 10: Khi bay với vận tốc siêu thanh (tốc độ chuyển động lớn hơn tốc độ âm thanh trong cùng môi trường), một máy bay tạo ra một vùng nhiễu động trên mặt đất dọc theo một nhánh của hypebol (H) (Hình 4).

Khám phá 2 trang 52 Chuyên đề Toán 10: Cho điểm M(x; y) nằm trên hypebol 

Thực hành 2 trang 52 Chuyên đề Toán 10: Tính độ dài hai bán kính qua tiêu của điểm M(x; y) trên hypebol 

Vận dụng 2 trang 53 Chuyên đề Toán 10: Tính độ dài hai bán kính qua tiêu của đỉnh A2(a; 0) trên hypebol (H): 

Khám phá 3 trang 53 Chuyên đề Toán 10: Cho hypebol . Chứng tỏ rằng 

Thực hành 3 trang 53 Chuyên đề Toán 10: Tìm tâm sai của các hypebol sau:

Vận dụng 3 trang 53 Chuyên đề Toán 10: Cho hypebol (H) có tâm sai bằng . Chứng minh trục thực và trục ảo của (H) có độ dài bằng nhau

Vận dụng 4 trang 53 Chuyên đề Toán 10: Một vật thể có quỹ đạo là một nhánh của hypebol (H), nhận tâm Mặt Trời làm tiêu điểm (Hình 6). Cho biết tâm sai của (H) bằng 1,2 và khoảng cách gần nhất giữa vật thể và tâm Mặt Trời là 2 . 108 km

Khám phá 4 trang 54 Chuyên đề Toán 10: Cho điểm M(x; y) trên hypebol  và hai đường thẳng (Hình 7)

Thực hành 4 trang 55 Chuyên đề Toán 10: Tìm toạ độ hai tiêu điểm và viết phương trình hai đường chuẩn tương ứng của các hypebol sau:

Vận dụng 5 trang 55 Chuyên đề Toán 10: Lập phương trình chính tắc của hypebol có tiêu cự bằng 26 và khoảng cách giữa hai đường chuẩn bằng 

Bài 1 trang 55 Chuyên đề Toán 10: Cho hypebol 

Bài 2 trang 55 Chuyên đề Toán 10: Lập phương trình chính tắc của hypebol có tiêu cự bằng 20 và khoảng cách giữa hai đường chuẩn bằng 

Bài 4 trang 55 Chuyên đề Toán 10: Trong hoạt động mở đầu bài học, cho biết khoảng cách giữa hai trạm vô tuyến là 600 km, vận tốc sóng vô tuyến là 300000 km/s và thời gian con tàu nhận được tín hiệu từ hai trạm trên bờ biển luôn cách nhau 0,0012 s (hai trạm vô tuyến phát các tín hiệu cùng một thời điểm). Viết phương trình chính tắc của quỹ đạo hypebol (H) của con tàu.

Đánh giá

0

0 đánh giá