Với Giải SBT Toán 7 Bài 5 trang 65 trong Bài tập cuối chương 8 Sách bài tập Toán lớp 7 Tập 2 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 7.
Cho hai đoạn thẳng AB và CD cắt nhau tại O. Tìm điểm M sao cho: MA + MB + MC + MD nhỏ nhất
Bài 5 trang 65 sách bài tập Toán 7: Cho hai đoạn thẳng AB và CD cắt nhau tại O. Tìm điểm M sao cho: MA + MB + MC + MD nhỏ nhất.
Lời giải:
Xét ∆ABM có: MA + MB ≥ AB (bất đẳng thức trong tam giác)
Xét ∆CDM có: MC + MD ≥ CD (bất đẳng thức trong tam giác)
Suy ra MA + MB + MC + MD ≥ AB + CD.
Nên MA + MB + MC + MD nhỏ nhất khi và chỉ khi:
MA + MB + MC + MD = AB + CD
Khi đó MA + MB = ABvà MC + MD = CD
Điều này chỉ xảy ra khi M trùng với điểm O.
Vậy khi điểm M là giao điểm của AB và CD thì MA + MB + MC + MD nhỏ nhất.
Xem thêm lời giải SBT Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác:
Xem thêm các bài giải SBT Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác:
Bài 9: Tính chất ba đường phân giác của tam giác
Bài 1: Làm quen với biến cố ngẫu nhiên
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.