Cho tam giác ABC cân tại A, hai đường cao BE và CF cắt nhau tại H

1.4 K

Với Giải SBT Toán 7 Bài 9 trang 66 trong Bài tập cuối chương 8 Sách bài tập Toán lớp 7 Tập 2 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 7.

Cho tam giác ABC cân tại A, hai đường cao BE và CF cắt nhau tại H

Bài 9 trang 66 sách bài tập Toán 7: Cho tam giác ABC cân tại A, hai đường cao BE và CF cắt nhau tại H. Chứng minh AH là đường trung trực của BC.

Lời giải:

Cho tam giác ABC cân tại A, hai đường cao BE và CF cắt nhau tại H

Tam giác ABC có hai đường cao BE và CF cắt nhau tại H nên H là trực tâm của tam giác.

Do đó AH là đường cao ứng với cạnh BC.

Kéo dài AH cắt BC tại M.

Khi đó AH ⊥ BC tại M (1)

Vì tam giác ABC cân tại A (giả thiết) nên AB = AC.

Xét ΔBMA và ΔCMA có:

BMA^=CMA^=90°,

AM là cạnh chung,

AB = AC (chứng minh trên)

Do đó ΔBMA = ΔCMA (cạnh huyền – cạnh góc vuông).

Suy ra BM = CM (hai cạnh tương ứng)(2)

Từ (1) và (2) suy ra AH ⊥ BC tại trung điểm M của BC.

Do đó AH là đường trung trực của BC.

Vậy AH là đường trung trực của BC.

Đánh giá

0

0 đánh giá