Với giải Câu hỏi trang 31 Toán 10 Tập 2 Kết nối tri thức chi tiết trong Bài 19: Phương trình đường thẳng giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem:
SBT Toán 10 Kết nối tri thức trang 31 Bài 19: Phương trình đường thẳng
Bài 7.1 trang 31 SBT Toán 10 Tập 2: Trong mặt phẳng Oxy, cho điểm D(0; 2) và hai vectơ .
a) Viết phương trình tổng quát của đường thẳng d đi qua D và nhận là một vectơ pháp tuyến.
b) Viết phương trình tham số của đường thẳng Δ đi qua D và nhận là một vectơ chỉ phương.
Lời giải:
a)
Phương trình tổng quát của đường thẳng d đi qua D và nhận là một vectơ pháp tuyến là:
1(x – 0) – 3(y – 2) = 0
⇔ x – 3y + 6 = 0
Vậy d: x – 3y + 6 = 0.
b)
Phương trình tham số của đường thẳng ∆ đi qua D và nhận là một vectơ chỉ phương là:
Bài 7.2 trang 31 SBT Toán 10 Tập 2: Trong mặt phẳng Oxy, cho ba điểm A(1; 2), B(0; –1) và C(–2; 3). Lập phương trình tổng quát của đường thẳng qua A và vuông góc với đường thẳng BC.
Lời giải:
Đường thẳng d qua A và vuông góc với đường thẳng BC nhận vectơ làm vectơ pháp tuyến.
= (–2 – 0; 3 + 1) = (–2; 4)
Phương trình của đường thẳng d là:
–2(x – 1) + 4(y – 2) = 0
⇔ –2x + 2 + 4y – 8 = 0
⇔ –2x + 4y – 6 = 0
⇔ x – 2y + 3 = 0
Vậy d: x – 2y + 3 = 0.
Bài 7.3 trang 31 SBT Toán 10 Tập 2: Trong mặt phẳng Oxy, cho hai điểm A(1; 2) và B(2; 3). Tìm một vectơ chỉ phương của đường thẳng AB và viết phương trình tham số của đường thẳng AB
Lời giải:
Một vectơ chỉ phương của đường thẳng AB chính là vectơ .
Ta có: = (1; 1)
Đường thẳng AB đi qua điểm A(1; 2) có vectơ chỉ phương = (1; 1) có phương trình tham số là:
Bài 7.4 trang 31 SBT Toán 10 Tập 2: Trong mặt phẳng Oxy, cho đường thẳng ∆: 2x – y + 5 = 0. Tìm tất cả các vectơ pháp tuyến có độ dài của đường thẳng ∆.
Lời giải:
Dựa vào phương trình tổng quát của đường thẳng ∆: 2x – y + 5 = 0. Đường thẳng ∆ có một vectơ pháp tuyến là nên các vectơ pháp tuyến của ∆ có dạng là . Theo giả thiết ta có:
⇔ 4t2 + t2 = 20
⇔ 5t2 = 20
⇔ t2 = 4
⇔ t = ±2
Với t = 2, ta được vectơ pháp tuyến thỏa mãn yêu cầu đề bài là: = (4; –2)
Với t = – 2, ta được vectơ pháp tuyến thỏa mãn yêu cầu đề bài là: = (–4; 2).
Vậy có hai vectơ pháp tuyến thỏa mãn là = (4; –2) và = (–4; 2).
Bài 7.5 trang 31 SBT Toán 10 Tập 2: Trong mặt phẳng Oxy, cho đường thẳng d có phương trình y = –2x + 3. Viết phương trình tham số và phương trình tổng quát của đường thẳng d.
Lời giải:
Ta có: y = –2x + 3 ⇔ 2x + y – 3 = 0
Phương trình tổng quát của đường thẳng d là: 2x + y – 3 = 0.
Từ phương trình tổng quát ta thấy đường thẳng d: 2x + y – 3 = 0 có một vectơ pháp tuyến là: = (2; 1), do đó, nó có một vectơ chỉ phương là = (1; –2).
Thay x = 1 vào phương trình tổng quát ta có: y = 1.
Chọn điểm (1; 1) thuộc đường thẳng d: 2x + y – 3 = 0. Phương trình tham số của đường thẳng này là:
Bài 7.6 trang 31 SBT Toán 10 Tập 2: Trong mặt phẳng Oxy, cho điểm M(2; 1) và đường thẳng . Tìm điểm N thuộc đường thẳng ∆ sao cho
Lời giải:
Do N thuộc đường thẳng ∆ nên tọa độ của N có dạng: (2 – t; 2t).
Ta có: = (2 – t – 2; 2t – 1) = (–t; 2t – 1)
⇔ (– t)2 + (2t – 1)2 = 2
⇔ t2 + 4t2 – 4t + 1 = 2
⇔ 5t2 – 4t – 1 = 0
⇔ t = 1 hoặc t =
Với t = 1, ta có N(1; 2)
Với t = , ta có .
Vậy có hai điểm N thỏa mãn là N(1; 2) và .
Bài 7.7 trang 31 SBT Toán 10 Tập 2: Trong mặt phẳng Oxy, cho tam giác ABC có toạ độ ba đỉnh A(0; –1), B(2; 3) và C(–4; 1). Lập phương trình tham số của đường trung bình ứng với cạnh BC của tam giác ABC.
Lời giải:
Gọi d là đường trung bình ứng với cạnh BC của tam giác ABC nên d // BC và d đi qua trung điểm M của AB, do đó:
Đường thẳng d nhận vectơ = (–4 – 2; 1 – 3) = (–6; –2) là một vectơ chỉ phương.
Tọa độ trung điểm M là xM = ; yM = .
Suy ra M(1; 1) thuộc d.
Phương trình tham số của d là:
Xem thêm các bài giải sách bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:
Bài 7.1 trang 31 SBT Toán 10 Tập 2: Trong mặt phẳng Oxy, cho điểm D(0; 2) và hai vectơ ...
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.