Viết phương trình chính tắc của hypebol (H), biết (H) đi qua điểm 

3.4 K

Với giải Câu hỏi 7.32 trang 46 SBT Toán 10 Tập 2 Kết nối tri thức chi tiết trong Bài 22: Ba đường Conic giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 10. Mời các bạn đón xem: 

Viết phương trình chính tắc của hypebol (H), biết (H) đi qua điểm 

Bài 7.32 trang 46 SBT Toán 10 Tập 2: Viết phương trình chính tắc của hypebol (H), biết (H) đi qua điểm M32;-4 và có một tiêu điểm là F2(5; 0).

Lời giải:

Phương trình chính tắc của (H) có dạng: x2a2-y2b2=1 (trong đó a, b > 0)

Do (H) có một tiêu điểm là F2(5; 0) nên ta có:

c = 5 ⇒ b2 + a2 = c2 = 25 ⇔ a2 = 25 – b2

Vì (H) đi qua điểm M32;-4 nên ta có

322a2--42b2=118a2-16b2=1 (1)

Đặt t = b2 (t > 0) ⇒ a2 = 25 – t. Thay vào (1) ta được

1825-t-16t=1

⇒ 18t – 16(25 – t) = (25 – t)t

⇔ 18t – 400 + 16t = 25t – t2

⇔ t2 + 9t – 400 = 0

⇔ t = 16 (thỏa mãn) hoặc t = –25 (không thỏa mãn)

Do đó, b2 = t = 16, a2 = 25 – t = 9.

Vậy phương trình chính tắc của (H) là: x29-y216=1.

Đánh giá

0

0 đánh giá