Toán 10 Chân trời sáng tạo trang 67 Bài 4: Ba đường Conic trong mặt phẳng toạ độ

417

Với giải Câu hỏi trang 67 Toán 10 Tập 2 Chân trời sáng tạo trong Bài 4: Ba đường Conic trong mặt phẳng toạ độ học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem: 

Toán 10 Chân trời sáng tạo trang 67 Bài 4: Ba đường Conic trong mặt phẳng toạ độ

Thực hành 2 trang 67 Toán 10 Tập 2: Viết phương trình chính tắc của hypebol có tiêu cự bằng 10 và độ dài trục nhỏ bằng 6.

Phương pháp giải:

Phương trình chính tắc của hypebol có dạng x2a2y2b2=1 với M(x;y)(H);b=c2a2

Lời giải 

Ta có: 2c=10c=5,2b=6b=3

Suy ra a=c2b2=5232=4

Vậy phương trình chính tắc của hypebol có dạng x216y29=1

Vận dụng 2 trang 67 Toán 10 Tập 2: Một tháp làm nguội của một nhà cát có mặt cắt là một hypebol có phương trình x2272y2402=1 (hình 9). Cho biết chiều cao của tháp là 120 m và khoảng cách từ nóc tháp đến tâm đối xứng của hypebol  bằng một nửa khoảng cách từ tâm đối xứng đến đáy. Tìm bán kính đường tròn nóc và bán kính đường tròn đáy của tháp.

Vận dụng 2 trang 67 Toán 10 Tập 2 Chân trời sáng tạo (ảnh 1)

Phương pháp giải:

Bước 1: Xác định khoảng cách từ tâm đến đỉnh tháp và đáy tháp

Bước 2: Từ kết quả vừa tìm thay vào phương trình hypebol bằng kết quả đó tìm (Chỉ lấy kết quả dương)

Lời giải 

Gọi khoảng cách từ tâm đối xứng đến đỉnh tháp là z

Suy ra khoảng cách từ tâm đối xứng đến đáy tháp là 2z

Ta có z+2z=120z=40

Thay y=40 vào phương trình x2272y2402=1 ta tìm được x=272

Thay y=80 vào phương trình x2272y2402=1 ta tìm được x=275

Vậy bán kính đường tròn nóc và bán kính đường tròn đáy của tháp lần lượt là 272 và 275

Đánh giá

0

0 đánh giá