Toán 10 Chân trời sáng tạo trang 71 Bài 4: Ba đường Conic trong mặt phẳng toạ độ

502

Với giải Câu hỏi trang 71 Toán 10 Tập 2 Chân trời sáng tạo trong Bài 4: Ba đường Conic trong mặt phẳng toạ độ học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem: 

Toán 10 Chân trời sáng tạo trang 71 Bài 4: Ba đường Conic trong mặt phẳng toạ độ

Bài 4 trang 71 Toán 10 Tập 2 Một nhà vòm chứa máy bay có mặt cắt hình nửa elip cao 8 m, rộng 20 m (hình 16)

a) Chọn hệ tọa độ thích hợp và viết phương trình của elip nói trên

b) Tính khoảng cách phương thẳng đứng từ một điểm cách chân tường 5 m đến nóc nhà vòm

Bài 4 trang 71 Toán 10 Tập 2 Chân trời sáng tạo (ảnh 1)

Phương pháp giải 

a) Bước 1: Chọn hệ trục tọa độ Oxy với gốc tọa độ tại tâm đáy nhà vòm

Bước 2: Viết phương trình chính tắc của elip có dạng x2a2+y2b2=1 với M(x;y)(E);b=a2c2

b) Bước 1: Từ dữ kiện cách chân tường 5 m, xác định cách gốc tạo độ bao nhiêu (x=?)

  Bước 2: Thay vừa tìm được vào phương trình chính tắc tìm y

Lời giải 

a) Chọn hệ trục tọa độ Oxy với gốc tọa độ tại tâm đáy nhà vòm, trục tung thẳng đứng

Bài 4 trang 71 Toán 10 Tập 2 Chân trời sáng tạo (ảnh 2)

Nhà vòm có dạng elip nên có phương trình chính tắc là x2a2+y2b2=1   (với a,b>0)

Ta có chiều cao 8 m nên OA=h=5, chiều rộng của vòm là 20 m, suy ra BC=2OB=20OB=10

Từ đó ta có tọa độ các điểm: C(10;0),A(0;5)

Thay hai điểm đó vào phương trinh chính tắc ta có:

{102a2+02b2=102a2+52b2=1{a=10b=5

Suy ra, phương trình miêu tả hình dáng nhà vòm là x2100+y225=1

b) Điểm đó cách chân tưởng 5 m tương ứng cách tâm 5 m (vì từ tâm vòm đến tưởng là 10 m)

Thay x=5 vào phương trình x2100+y225=1, ta tìm được y=532

Vậy khoảng cách phương thẳng đứng từ một điểm cách chân tường 5 m đến nóc nhà vòm là 532 m

Bài 5 trang 71 Toán 10 Tập 2: Một tháp làm nguội của một nhà máy có mặt cắt là hình hyperbol có phương trình x2282y2422=1 (hình 17). Biết chiều cao của tháp là 150 m và khoảng cách từ nóc tháp đến tâm đối xứng của hypebol là 23 khoảng cách từ tâm đối xứng đến đáy. Tính bán kính nóc và bán kính đáy của tháp

Bài 5 trang 71 Toán 10 Tập 2 Chân trời sáng tạo (ảnh 1)

Phương pháp giải 

Bước 1: Xác định khoảng cách từ tâm đến đỉnh tháp và đáy tháp

Bước 2: Từ kết quả vừa tìm thay vào phương trình hypebol bằng kết quả đó tìm (Chỉ lấy kết quả dương)

Lời giải 

Gọi khoảng cách từ tâm đối xứng đến đáy tháp là z

Suy ra khoảng cách từ tâm đối xứng đến nóc tháp là 23z

Ta có z+23z=150z=90

Thay y=90 vào phương trình x2282y2422=1 ta tìm được x=4274

Thay y=60 vào phương trình x2282y2422=1 ta tìm được x=4149

Vậy bán kính đường tròn nóc và bán kính đường tròn đáy của tháp lần lượt là 4149 m và 4274m.

Bài 6 trang 71 Toán 10 Tập 2: Một cái cầu có dây cáp treo như hình vẽ parabol, cầu dài 100 m và được nâng đỡ bởi những thanh thẳng đứng treo từ cáp xuống, thanh dài nhất là 30m, thanh ngắn nhất là 6m (hình 18). Tính chiều dài của thanh cách điểm giữa cầu 18m

Bài 6 trang 71 Toán 10 Tập 2 Chân trời sáng tạo (ảnh 1)

Phương pháp giải

Bước 1: Gắn hệ trục tọa độ với gốc tọa độ tại điểm giữa cầu

Bước 2: Xác định phương trình mô tả hình dạng của cầu

Bước 3: Thay giả thiết vào phương trình vừa tìm được để tìm chiều dài thanh treo cầu

Lời giải 

Chọn hệ tọa độ Oxy với gốc tọa độ tại điểm trên của thanh ngắn giữa cầu, trục tung tương ứng là mặt đường của cầu, vẽ lại hình như dưới đây

Bài 6 trang 71 Toán 10 Tập 2 Chân trời sáng tạo (ảnh 2)

Ta nhận thấy cầu có dạng parabol nên gọi phương trình mô tả hình dạng cầu là y2=2px

Cầu dài 100 m tương ứng AB=2OB=100OB=50, thanh dài nhất dài 30 m

Từ đó ta có tọa độ điểm C(24;50)

Thay tọa độ vào phương trình y2=2px ta có 2500=2p.24p=62512

Ta có phương trình mô tả cây cầu là y2=6256x

Tại thanh cách điểm giữa cầu 18m thì x=18 ta có 182=6256.xx3,11

Vậy chiều dài của thanh cách điểm giữa cầu 18m gần bằng 3,11 m.

Đánh giá

0

0 đánh giá