Toán 10 Kết nối tri thức trang 83 Bài 13: Các số đặc trưng đo xu thế trung tâm

253

Với giải Câu hỏi trang 83 Toán 10 Tập 1 Kết nối tri thức trong Bài 13: Các số đặc trưng đo xu thế trung tâm học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem:

Toán 10 Kết nối tri thức trang 83 Bài 13: Các số đặc trưng đo xu thế trung tâm

Bài 5.9 trang 83 Toán 10: Số lượng học sinh giỏi Quốc gia năm học 2018-2019 của 10 trường Trung học phổ thông được cho như sau:

0   0   4   0   0   0   10   0   6   0.

a) Tìm số trung bình, mốt, các tứ phân vị của mẫu số liệu trên.

b) Giải thích tại sao tứ phân vị thứ nhất và trung vị trùng nhau.

Phương pháp giải:

a) - Áp dụng công thức số trung bình của mẫu số liệu x1,x2,...,xn:

X¯=x1+x2+...+xnn

- Số trung vị

+ Sắp xếp lại số liệu theo thứ tự không giảm.

+ Nếu số giá trị của mẫu số liệu là số lẻ thì giá trị chính giữa của mẫu là trung vị. Nếu là số chẵn thì trung vị là trung bình cộng của hai giá trị chính giữa của mẫu.

- Mốt: Giá trị xuất hiện với tần số lớn nhất.

- Tứ phân vị

+ Sắp xếp theo thứ tự không giảm.

+ Tìm trung vị. Giá trị này là Q2

+ Tìm trung vị của nửa số liệu bên trái Q2, (không bao gồm Q2, nếu n lẻ). Giá trị này là Q1

+ Tìm trung vị của nửa số liệu bên phải Q2, (không bao gồm Q2, nếu n lẻ). Giá trị này là Q3

b) Các tứ phân vị cho ta hình ảnh phân bố của mẫu số liệu. Cho biết mật độ tập trung của các mẫu số liệu. Khoảng cách giữa các tứ phân vị càng lớn thì mật độ tập trung càng thấp và ngược lại.

Lời giải:

a) Sắp xếp theo thứ tự không giảm:

0  0  0  0  0  0  0  4  6  10

Số trung bình: X¯=0.7+4+6+1010=2

Trung vị: Q2=0

Tứ phân vị:

+ Nửa bên trái của Q2:

0  0  0  0  0

=>Q1=0

+ Nửa bên phải của Q2:

0  0  4  6  10

=>Q3=4

b) Tứ phân vị thứ nhất và trung vị trùng nhau vì mật độ của mẫu số liệu tập trung hết ở nửa trái của trung vị, mẫu số liệu bên trái có số liệu bằng 0 hết.

Bài 5.10 trang 83 Toán 10: Bảng sau đây cho biết số chỗ ngồi của một số sân vận động được sử dụng trong

Giải Bóng đá Vô địch Quốc gia Việt Nam năm 2018 (số liệu gần đúng).

 

Các giá trị số trung bình, trung vị, mốt bị ảnh hưởng thế nào nếu bỏ đi số liệu chỗ ngồi của Sân vận động Quốc gia Mỹ Đình?

Phương pháp giải:

- Sắp xếp lại mẫu số liệu

- Áp dụng công thức số trung bình của mẫu số liệu x1,x2,...,xn:

X¯=x1+x2+...+xnn

- Số trung vị

+ Sắp xếp lại số liệu theo thứ tự không giảm.

+ Nếu số giá trị của mẫu số liệu là số lẻ thì giá trị chính giữa của mẫu là trung vị. Nếu là số chẵn thì trung vị là trung bình cộng của hai giá trị chính giữa của mẫu.

- Mốt: Giá trị xuất hiện với tần số lớn nhất.

- Tứ phân vị

+ Sắp xếp theo thứ tự không giảm.

+ Tìm trung vị. Giá trị này là Q2

+ Tìm trung vị của nửa số liệu bên trái Q2, (không bao gồm Q2, nếu n lẻ). Giá trị này là Q1

+ Tìm trung vị của nửa số liệu bên phải Q2, (không bao gồm Q2, nếu n lẻ). Giá trị này là Q3

Lời giải:

Sắp xếp lại mẫu số liệu:

20 120   20 120   21 315   23 405   37 546

Số trung bình:

20120.2+21315+23405+375465=24501,2

Trung vị: 21 315

Mốt: 20 120

Nếu bỏ đi số liệu chỗ ngồi của Sân vận động Quốc gia Mỹ Đình thì số trung bình giảm, trung vị giảm và Mốt thì vẫn giữ nguyên.

Cụ thể: số trung bình là 21 240; trung vị là 20 717,5 và Mốt vẫn là 20 120

Đánh giá

0

0 đánh giá