SBT Toán 10 Cánh Diều trang 10 Bài 1: Mệnh đề

236

Với giải Câu hỏi trang 10 SBT Toán 10 Tập 1 Cánh Diều trong Bài 1: Mệnh đề giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập SBT Toán 10. Mời các bạn đón xem: 

SBT Toán 10 Cánh Diều trang 10 Bài 1: Mệnh đề

Bài 16 trang 10 SBT Toán 10 Tập 1Lập mệnh đề phủ định của mỗi mệnh đề sau và xét tính đúng sai của mỗi mệnh đề phủ định đó.

a) ∀n ∈ ℕ, n(n + 1) chia hết cho 2;

b) ∀x ∈ ℝ, x2 > x;

c) ∃x ∈ ℝ, |x| > x;

d) ∃x ∈ ℚ, x2 – x – 1 = 0.

Lời giải:

a) Gọi A: “∀n ∈ ℕ, n(n + 1) chia hết cho 2”

Mệnh đề phủ định của mệnh đề A: “∀n ∈ ℕ, n(n + 1) chia hết cho 2” là A¯: “∃n ∈ ℕ, n(n + 1) không chia hết cho 2”.

+) Xét tính đúng sai:

Với n = 2k (k ∈ ℕ) khi đó n.(n + 1) = 2k.(2k + 1) chia hết cho 2.

Với n = 2k + 1 (k ∈ ℕ) khi đó n.(n + 1) = (2k + 1).(2k + 2) = (2k + 1)(k + 1).2 chia hết cho 2.

Suy ra với mọi giá trị của n thì n(n + 1) chia hết cho 2. Do đó mệnh đề A đúng và A¯ sai.

b) Gọi B: “∀x ∈ ℝ, x2 > x”

Mệnh đề phủ định của mệnh đề B: “∀x ∈ ℝ, x2 > x” là B¯: “∃x ∈ ℝ, x2 ≤ x”.

Xét x2 > x

⇔ x2 – x > 0

⇔ x(x – 1) > 0

x>0x1>0x<0x1<0x>1x<0

Suy ra không phải với mọi số thực x thì x2 > x.

Do đó mệnh đề B sai, mệnh đề B¯ đúng.

c) Gọi C: “∃x ∈ ℝ, |x| > x”.

Mệnh đề phủ định của mệnh đề C: “∃x ∈ ℝ, |x| > x” là mệnh đề C¯: “∀x ∈ ℝ, |x| ≤ x”.

Ta luôn có |x| ≥ x với mọi giá trị thực của x. Do đó mệnh đề C là mệnh đề đúng, mệnh đề C¯ là mệnh đề sai.

d) Gọi D: “∃x ∈ ℚ, x2 – x – 1 = 0”

Mệnh đề phủ định của mệnh đề C: “∃x ∈ ℚ, x2 – x – 1 = 0” là mệnh đề <![if !vml]><![endif]>: “∀x ∈ ℚ, x2 – x – 1 ≠ 0”.

Xét phương trình x2 – x – 1 = 0

Có: ∆ = (-1)2 – 4.1.(-1) = 1 + 4 = 5 > 0

Khi đó phương trình có hai nghiệm x1=1+52 và x2=152.

Mà 1+52;152

Do đó không tồn tại số hữu tỉ x nào để x2 – x – 1 = 0.

Vì vậy mệnh đề C sai và mệnh đề C¯ đúng.

Bài 17 trang 10 SBT Toán 10 Tập 1Cho phương trình ax2 + bx + c = 0.

a) Xét mệnh đề “Nếu a + b + c = 0 thì phương trình ax2 + bx + c = 0 có một nghiệm bằng 1”. Mệnh đề này đúng hay sai?

b) Phát biểu mệnh đề đảo của mệnh đề trên. Mệnh đề đảo đúng hay sai?

c) Nêu điều kiện cần và đủ để phương trình ax2 + bx + c = 0 có một nghiệm bằng 1.

Lời giải:

a) Ta có a + b + c = 0 cần chứng minh phương trình ax2 + bx + c = 0 có một nghiệm bằng 1, thật vậy:

Thay x = 1 vào phương trình ax2 + bx + c = 0, ta được:

a.12 + b.1 + c = 0

⇔ a + b + c = 0 (luôn đúng).

Do đó mệnh đề “Nếu a + b + c = 0 thì phương trình ax2 + bx + c = 0 có một nghiệm bằng 1” là mệnh đề đúng.

b) Mệnh đề đảo của mệnh đề trên được phát biểu như sau:

“ Nếu phương trình ax2 + bx + c = 0 có một nghiệm bằng 1 thì a + b + c = 0”

Vì x = 1 là nghiệm của phương trình đã cho nên ta có: a.12 + b.1 + c = 0 ⇔ a + b + c = 0. Do đó mệnh đề đảo là mệnh đề đúng.

c) Ta có mệnh đề “Nếu a + b + c = 0 thì phương trình ax2 + bx + c = 0 có một nghiệm bằng 1” là mệnh đề đúng và mệnh đề đảo “ Nếu phương trình ax2 + bx + c = 0 có một nghiệm bằng 1 thì a + b + c = 0” là mệnh đề đúng. Do đó ta có “Điều kiện cần và đủ để phương trình ax2 + bx + c = 0 có một nghiệm bằng 1 là a + b + c = 0”.

  •  

Đánh giá

0

0 đánh giá