SBT Toán 10 Cánh Diều trang 25 Bài 1: Bất phương trình bậc nhất hai ẩn

335

Với giải Câu hỏi trang 25 SBT Toán 10 Tập 1 Cánh Diều trong B Bài 1: Bất phương trình bậc nhất hai ẩn giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập SBT Toán 10. Mời các bạn đón xem: 

SBT Toán 10 Cánh Diều trang 25 Bài 1: Bất phương trình bậc nhất hai ẩn

Bài 4 trang 25 SBT Toán 10 Tập 1Nửa mặt phẳng không bị gạch (không kể d) ở Hình 3 là miền nghiệm của bất phương trình nào sau đây?

Nửa mặt phẳng không bị gạch không kể d ở Hình 3 là miền nghiệm của bất phương trình nào

A. 3x + y < 3;

B. x + 3y > 3;

C. x + 3y < 3;

D. 3x + y > 3.

Lời giải:

Đáp án đúng là D

Gọi đường thẳng d có dạng: y = ax + b (a ≠ 0)

Đường thẳng d cắt trục Ox tại điểm có tọa độ (1; 0), thay tọa độ này vào phương trình đường thẳng d ta được: 0 = a.1+ b ⇔ a + b = 0 (1).

Đường thẳng d cắt trục Oy tại điểm có tọa độ (0; 3), thay tọa độ này vào phương trình đường thẳng d ta được: 3 = a.0 + b ⇔ b = 3.

Thay b = 3 vào (1) ta được: a + 3 = 0 ⇔ a = – 3 (thỏa mãn).

Khi đó phương trình đường thẳng d là: y = – 3x + 3 hay 3x + y = 3.

Ta có: 3.0 + 0 = 0 < 3 và dựa vào hình vẽ ta thấy điểm (0; 0) không thuộc vào miền nghiệm của bất phương trình đã cho và không kể đường thẳng d nên 3x + y > 3.

Vậy nửa mặt phẳng không bị gạch (không kể d) ở Hình 3 biểu diền miền nghiệm của bất phương trình 3x + y > 3.

Bài 5 trang 25 SBT Toán 10 Tập 1Nửa mặt phẳng không bị gạch (kể cả d) ở Hình 4 là miền nghiệm của bất phương trình nào sau đây?

Nửa mặt phẳng không bị gạch không kể d ở Hình 4 là miền nghiệm của bất phương trình nào

A. 2x – y ≤ 0;

B. 2x – y ≥ 0;

C. x – 2y ≥ 0;

D. x – 2y ≤ 0.

Lời giải:

Đáp án đúng là A

Gọi đường thẳng d có dạng: y = ax + b (a ≠ 0)

Đường thẳng d đi qua gốc tọa độ (0; 0), thay tọa độ này vào phương trình đường thẳng d ta được: 0 = a.0 + b ⇔ b = 0 (1).

Đường thẳng d đi qua điểm có tọa độ (1; 2), thay tọa độ này vào phương trình đường thẳng d ta được: 2 = a.1 + b ⇔ a + b = 2.

Mà b = 0 nên a + 0 = 2 ⇔ a = 2 (thỏa mãn).

Khi đó phương trình đường thẳng d là: y = 2x hay 2x – y = 0.

Ta có: 2.0 – 2 = – 2 < 0 và dựa vào hình vẽ ta thấy điểm (0; 2) thuộc vào miền nghiệm của bất phương trình đã cho và kể cả đường thẳng d nên 2x – y ≤ 0.

Vậy nửa mặt phẳng không bị gạch (kể cả d) ở Hình 4 biểu diền miền nghiệm của bất phương trình 2x – y ≤ 0.

Bài 6 trang 25 SBT Toán 10 Tập 1Cặp số nào sau đây là nghiệm của bất phương trình – 5x + 2y > 10?

a) (– 2; 1);

b) (1; 5);

c) (0; 5).

Lời giải:

a) Thay x = – 2, y = 1 vào bất phương trình – 5x + 2y > 10, ta được:

– 5.(– 2) + 2.1 > 10 ⇔ 12 > 10 (luôn đúng)

Do đó cặp số (– 2; 1) là nghiệm của bất phương trình đã cho.

b) Thay x = 1, y = 5 vào bất phương trình – 5x + 2y > 10, ta được:

– 5.1 + 2.5 > 10 ⇔ 5 > 10 (vô lí)

Do đó cặp số (1; 5) không là nghiệm của bất phương trình đã cho.

c) Thay x = 0, y = 5 vào bất phương trình – 5x + 2y > 10, ta được:

– 5.0 + 2.5 > 10 ⇔ 10 > 10 (vô lí)

Do đó cặp số (0; 5) không là nghiệm của bất phương trình đã cho.

Vậy chỉ có cặp số (– 2; 1) là nghiệm của bất phương trình đã cho.

Bài 7 trang 25 SBT Toán 10 Tập 1Biểu diễn miền nghiệm của mỗi bất phương trình sau:

a) 3x + 5y < 15;

b) x – 2y ≥ 6;

c) y > – x + 3;

d) y ≤ 4 – 2x.

Lời giải:

a) Biểu diễn miền nghiệm của bất phương trình 3x + 5y < 15 gồm các bước sau:

+) Vẽ đường thẳng d: 3x + 5y = 15:

Đường thẳng d đi qua hai điểm (0; 3) và (5; 0).

+) Lấy điểm O(0; 0), ta có: 3.0 + 5.0 = 0 < 15.

Vậy miền nghiệm của bất phương trình đã cho là nửa mặt phẳng chứa điểm O(0; 0) và không kể đường thẳng d là nửa mặt phẳng tô màu trong hình sau:

Biểu diễn miền nghiệm của mỗi bất phương trình sau (ảnh 1)

b) Biểu diễn miền nghiệm của bất phương trình x – 2y ≥ 6 gồm các bước sau:

+) Vẽ đường thẳng d: x – 2y = 6:

Đường thẳng d đi qua hai điểm (0; – 3) và (6; 0).

+) Lấy điểm O(0; 0), ta có: 0 – 2.0 = 0 < 6.

Vậy miền nghiệm của bất phương trình đã cho là nửa mặt phẳng không chứa điểm O(0; 0) và kể cả đường thẳng d là nửa mặt phẳng tô màu trong hình sau:

Biểu diễn miền nghiệm của mỗi bất phương trình sau (ảnh 2)

c) Biểu diễn miền nghiệm của bất phương trình y > – x + 3 hay x + y > 3 gồm các bước sau:

+) Vẽ đường thẳng d: x + y = 3:

Đường thẳng d đi qua hai điểm (0; 3) và (3; 0).

+) Lấy điểm O(0; 0), ta có: 0 + 0 = 0 < 3.

Vậy miền nghiệm của bất phương trình đã cho là nửa mặt phẳng không chứa điểm O(0; 0) và không kể đường thẳng d là nửa mặt phẳng tô màu trong hình sau:

Biểu diễn miền nghiệm của mỗi bất phương trình sau (ảnh 3)

d) Biểu diễn miền nghiệm của bất phương trình y ≤ 4 – 2x hay 2x + y ≤ 4 gồm các bước sau:

+) Vẽ đường thẳng d: 2x + y = 4:

Đường thẳng d đi qua hai điểm (2; 0) và (0; 4).

+) Lấy điểm O(0; 0), ta có: 2.0 + 0 = 0 ≤ 4 .

Vậy miền nghiệm của bất phương trình đã cho là nửa mặt phẳng chứa điểm O(0; 0) và kể cả đường thẳng d là nửa mặt phẳng tô màu trong hình sau:

Biểu diễn miền nghiệm của mỗi bất phương trình sau (ảnh 4)

Đánh giá

0

0 đánh giá