Giải Toán 11 trang 24 Tập 1 (Kết nối tri thức)

281

Với giải SGK Toán 11 Kết nối tri thức trang 24 chi tiết trong Bài 3: Hàm số lượng giác giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải Toán 11 trang 24 Tập 1 (Kết nối tri thức)

Luyện tập 2 trang 24 Toán 11 Tập 1Xét tính chẵn, lẻ của hàm số gx=1x.

Lời giải:

Biểu thức 1x  có nghĩa khi x ≠ 0.

Suy ra tập xác định của hàm số gx=1x là D = ℝ \ {0}.

Do đó, nếu x thuộc tập xác định D thì – x cũng thuộc tập xác định D.

Ta có: g(– x) = 1x=1x = – g(x), ∀ x ∈ D.

Vậy gx=1x là hàm số lẻ.

HĐ3 trang 24 Toán 11 Tập 1So sánh:

a) sin(x + 2π) và sin x;

b) cos(x + 2π) và cos x;

c) tan(x + π) và tan x;

d) cot(x + π) và cot x.

Lời giải:

a) Ta có: sin(x + 2π) = sin[π + (x + π)] = – sin(x + π) = – sin(π + x) = – (– sin x) = sin x.

Vậy sin(x + 2π) = sin x.

b) Ta có: cos(x + 2π) = cos[π + (x + π)] = – cos(x + π) = – (– cos x) = cos x.

Vậy cos(x + 2π) = cos x.

c) Ta có: tan(x + π) = tan(π + x) = tan x.

Vậy tan(x + π) = tan x.

d) Ta có: cot(x + π) = cot(π + x) = cot x.

Vậy cot(x + π) = cot x.

Câu hỏi trang 24 Toán 11 Tập 1Hàm số hằng f(x) = c (c là hằng số) có phải hàm số tuần hoàn không? Nếu hàm số tuần hoàn thì nó có chu kì không?

Lời giải:

Hàm số hằng f(x) = c (c là hằng số) có tập xác định D = ℝ.

Với T là số dương bất kì và với mọi x ∈ D, ta luôn có:

+) x + T ∈ D và x – T ∈ D;

+) f(x + T) = c = f(x) (vì f(x) là hàm số hằng nên với mọi x thì giá trị của hàm số đều có giá trị bằng c).

Vậy hàm số hằng f(x) = c (c là hằng số) là hàm số tuần hoàn với chu kì là một số dương bất kì.

Đánh giá

0

0 đánh giá