Bài 1.21 trang 39 Toán 11 Tập 1 | Kết nối tri thức Giải Toán lớp 11

437

Với giải Bài 1.21 trang 39 Toán 11 Tập 1 Kết nối tri thức chi tiết trong Bài 4: Phương trình lượng giác cơ bản giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Bài 1.21 trang 39 Toán 11 Tập 1 | Kết nối tri thức Giải Toán lớp 11

Bài 1.21 trang 39 Toán 11 Tập 1Một quả đạn pháo được bắn ra khỏi nòng pháo với vận tốc ban đầu v0 = 500 m/s hợp với phương ngang một góc α. Trong Vật lí, ta biết rằng, nếu bỏ qua sức cản của không khí và coi quả đạn pháo được bắn ra từ mặt đất thì quỹ đạo của quả đạn tuân theo phương trình y=g2v02cos2αx2+xtanα, ở đó g = 9,8 m/s2 là gia tốc trọng trường.

a) Tính theo góc bắn α tầm xa mà quả đạn đạt tới (tức là khoảng cách từ vị trí bắn đến điểm quả đạn chạm đất).

b) Tìm góc bắn α để quả đạn trúng mục tiêu cách vị trí đặt khẩu pháo 22 000 m.

c) Tìm góc bắn α để quả đạn đạt độ cao lớn nhất.

Lời giải:

Vì v0 = 500 m/s, g = 9,8 m/s2 nên ta có phương trình quỹ đạo của quả đạn là 

y=9,82.5002.cos2αx2+xtanα hay y=492500000cos2αx2+xtanα .

a) Quả đạn chạm đất khi y = 0, khi đó 492500000cos2αx2+xtanα=0

x492500000cos2αx+tanα=0

x=0x=2500000cos2α.tanα49

x=0x=2500000cosα.sinα49

x=0x=1250000sin2α49

Loại x = 0 (đạn pháo chưa được bắn).

Vậy tầm xa mà quả đạn đạt tới là x=1250000sin2α49 (m).

b) Để quả đạn trúng mục tiêu cách vị trí đặt khẩu pháo 22 000 m thì x = 22 000 m.

Khi đó 1250000sin2α49=22000 ⇔ sin 2α = 539625

Gọi βπ2;  π2  là góc thỏa mãn sinβ=539625 . Khi đó ta có: sin 2α = sin β

2α=β+k2π2α=πβ+k2π  kα=β2+kπα=π2β2+kπ  k.

c) Hàm số y=492500000cos2αx2+xtanα  là một hàm số bậc hai có đồ thị là một parabol có tọa độ đỉnh I(xI; yI) là

xI=b2a=tanα2.492500000cos2α=1250  000cosαsinα49yI=fxI=492500000cos2α1250  000cosαsinα492+1250  000cosαsinα49tanα

Hay xI=1250  000cosαsinα49yI=625  000sin2α49

Do đó, độ cao lớn nhất của quả đạn là ymax=625  000sin2α49.

Ta có ymax=625  000sin2α4962500049 , dấu “=” xảy ra khi sinα = 1 hay α = 90°.

Như vậy góc bắn α = 90° thì quả đan đạt độ cao lớn nhất.

Đánh giá

0

0 đánh giá