Với giải Bài 5 trang 65 Toán 11 Tập 1 Cánh Diều chi tiết trong Bài 1: Giới hạn của dãy số giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:
Bài 5 trang 65 Toán 11 Tập 1 | Cánh Diều Giải Toán lớp 11
Bài 5 trang 65 Toán 11 Tập 1: Có 1 kg chất phóng xạ độc hại. Biết rằng, cứ sau một khoảng thời gian T = 24 000 năm thì một nửa số chất phóng xạ này bị phân ra thành chất khác không độc hại đối với sức khỏe của con người (T được gọi là chu kì bán rã).
(Nguồn: Đại số và Giải tích 11, NXB GD Việt Nam, 2021).
Gọi un là khối lượng chất phóng xạ còn lại sau chu kì thứ n.
a) Tìm số hạng tổng quát un của dãy số (un).
b) Chứng minh rằng (un) có giới hạn là 0.
c) Từ kết quả câu b), chứng tỏ rằng sau một số năm nào đó khối lượng chất phóng xạ đã cho ban đầu không còn độc hại đối với con người, biết rằng chất phóng xạ này sẽ không độc hại nữa nếu khối lượng chất phóng xạ còn bé lại bé hơn 10– 6 g.
Lời giải:
a) Ta có: u1 = 1; u2 = ; u3 = ; ...
Suy ra (un) lập thành một cấp số nhân có số hạng đầu u1 = 1 và q = có số hạng tổng quát là: .
b) Ta có: lim=0.
c) Đổi
Để chất phóng xạ bé hơn 10-6 (g) thì n>31.
Vậy cần ít nhất 30 chu kì tương ứng với 720 000 năm khối lượng chất phóng xạ đã cho ban đầu không còn độc hại đối với con người.
Xem thêm các bài giải Toán 11 Cánh Diều hay, chi tiết khác:
Luyện tập 1 trang 60 Toán 11 Tập 1: Chứng minh rằng:
a) lim 0 = 0;
b) lim=0.
Hoạt động 2 trang 60 Toán 11 Tập 1: Cho dãy số (un), với un = 2 + . Tính .
Luyện tập 3 trang 62 Toán 11 Tập 1: Chứng minh rằng: lim = 0.
Hoạt động 3 trang 62 Toán 11 Tập 1: Cho hai dãy số (un), (vn) với un = 8+; vn = 4-.
Luyện tập 4 trang 62 Toán 11 Tập 1: Tính các giới hạn sau: a) lim;
Hoạt động 4 trang 63 Toán 11 Tập 1: Cho cấp số nhân (un), với u1 = 1 và công bội q=1/2.
Luyện tập 5 trang 63 Toán 11 Tập 1: Tính tổng M = 1-
Luyện tập 7 trang 64 Toán 11 Tập 1: Tính lim(– n3).
Luyện tập 8 trang 64 Toán 11 Tập 1: Chứng tỏ rằng lim=0.
Bài 2 trang 65 Toán 11 Tập 1: Tính các giới hạn sau:a) lim;
Bài 3 trang 65 Toán 11 Tập 1: a) Tính tổng của cấp số nhân lùi vô hạn (un), với u1=, q=-. b) Biểu diễn số thập phân vô hạn tuần hoàn 1,(6) dưới dạng phân số.
Bài 6 trang 65 Toán 11 Tập 1: Gọi C là nửa đường tròn đường kính AB = 2R.
Xem thêm các bài giải sách giáo khoa Toán 11 Cánh Dều hay, chi tiết khác:
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.