Bài 4 trang 77 Toán 11 Tập 1 | Cánh Diều Giải Toán lớp 11

238

Với giải Bài 4 trang 77 Toán 11 Tập 1 Cánh Diều chi tiết trong Bài 3: Hàm số liên tục giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Bài 4 trang 77 Toán 11 Tập 1 | Cánh Diều Giải Toán lớp 11

Bài 4 trang 77 Toán 11 Tập 1: Xét tính liên tục của mỗi hàm số sau trên tập xác định của hàm số đó:

a) f(x) = x2 + sinx;

b) g(x) = x4 – x2 + 6x1;

c) h(x) = 2xx3+x1x+4.

Lời giải:

a) Hàm số f(x) = x2 + sinx có tập xác định là ℝ.

Hàm số x2 và sinx liên tục trên ℝ nên hàm số f(x) = x2 + sinx liên tục trên ℝ.

b) Hàm số g(x) = x4 – x2 + 6x1có tập xác định là ℝ\{1}.

Hàm số x4 – x2 liên tục trên toàn bộ tập xác định

Hàm số 6x1liên tục trên các khoảng ( – ∞; 1) và (1; +∞).

Vậy hàm số đã cho liên tục trên từng khoảng xác định của hàm số.

c) Hàm số h(x) = 2xx3+x1x+4có tập xác định D = ℝ\{– 4; 3}.

Hàm số 2xx3 liên tục trên các khoảng ( – ∞; 3) và (3; +∞).

Đánh giá

0

0 đánh giá