Toptailieu.vn biên soạn và giới thiệu Các bài toán về phương trình mặt phẳng hay, chi tiết, từ cơ bản đến nâng cao giúp học sinh nắm vững kiến thức về Các bài toán về phương trình mặt phẳng, từ đó học tốt môn Toán.
Các bài toán về phương trình mặt phẳng hay, chi tiết
I. LÝ THUYẾT
1. Vectơ pháp tuyến của mặt phẳng
Cho mặt phẳng . Nếu vectơ và có giá vuông góc với mặt phẳng thì là vectơ pháp tuyến (VTPT) của .
Chú ý:
+) Nếu là một VTPT của mặt phẳng thì cũng là một VTPT của mặt phẳng .
+) Một mặt phẳng được xác định duy nhất nếu biết một điểm nó đi qua và một VTPT của nó.
+) Nếu có giá song song hoặc nằm trên mặt phẳng thì là một VTPT của .
2. Phương trình tổng quát của mặt phẳng
Phương trình: Ax + By + Cz + D = 0 với được gọi là phương trình tổng quát của mặt phẳng.
Nhận xét:
+) Nếu mặt phẳng có phương trình Ax + By + Cz + D = 0 thì nó có một VTPT là .
+) Phương trình mặt phẳng đi qua điểm và nhận vectơ khác làm VTPT là: .
+) Phương trình mặt phẳng theo đoạn chắn . Ở đây cắt các trục tọa độ tại các điểm (a; 0; 0), (0; b; 0), (0; 0; c) với .
II. PHƯƠNG PHÁP GIẢI VÀ VÍ DỤ MINH HỌA
Dạng 1: Xác định vectơ pháp tuyến của mặt phẳng
Phương pháp giải:
Cho mặt phẳng có phương trình Ax + By + Cz + D = 0.
Khi đó mặt phẳng có một VTPT là .
Ví dụ 1: Trong không gian Oxyz, cho mặt phẳng (P): 2x – 4y + 5 = 0. Vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng (P)?
A.
B.
C.
D.
Hướng dẫn giải:
Ta có (P): 2x – 4y + 5 = 0 có một vectơ pháp tuyến là .
Vậy một vectơ pháp tuyến của mặt phẳng (P) là .
Chọn B.
Dạng 2: Viết phương trình mặt phẳng khi đã biết một điểm đi qua và vectơ pháp tuyến
Phương pháp giải:
Cho mặt phẳng đi qua điểm và nhận vectơ làm vectơ pháp tuyến. Khi đó phương trình mặt phẳng là
Ví dụ 2: Trong không gian Oxyz, mặt phẳng đi qua điểm A (2; 0; -2) và nhận làm véc tơ pháp tuyến có phương trình là
A. x + 2y + 3z + 4 = 0.
B. x + 2y + 3z – 8 = 0.
C. x – z + 2 = 0.
D. x – z – 4 = 0.
Hướng dẫn giải:
Phương trình mặt phẳng cần tìm là:
1(x – 2) + 2(y – 0) + 3[z – (-2)] = 0
x + 2y + 3z + 4 = 0.
Chọn A.
Dạng 3: Viết phương trình mặt phẳng đi qua điểm M và song song với mặt phẳng (P) cho trước.
Phương pháp giải:
+) Mặt phẳng song song với mặt phẳng (P) cho trước nên vectơ pháp tuyến của mặt phẳng chính là vectơ pháp tuyến của mặt phẳng (P).
+) Từ đó viết phương trình mặt phẳng đi qua M và có vectơ pháp tuyến là .
Ví dụ 3: Trong không gian Oxyz, mặt phẳng (Q) đi qua điểm A (1; 2; -1) và song song với 3x + 4y – z + 1 = 0 có phương trình là
A.
B.
C.
D.
Hướng dẫn giải:
có một vectơ pháp tuyến là .
Do
Vì (Q) đi qua A (1; 2; -1) nên phương trình mặt phẳng (Q) là:
3(x – 1) + 4(y – 2) – 1(z + 1) = 0
3x + 4y – z – 12 = 0
Chọn A.
Dạng 4: Viết phương trình mặt phẳng đi qua điểm M và vuông góc với hai mặt phẳng (P) và (Q).
Phương pháp giải:
Gọi , lần lượt là vectơ pháp tuyến của mặt phẳng , (P), (Q). Vì mặt phẳng vuông góc với hai mặt phẳng (P) và (Q) nên ta có
Từ đó viết phương trình mặt phẳng đi qua M và có vectơ pháp tuyến là đã tính phía trên.
Ví dụ 4: Cho hai mặt phẳng (P): 3x – 2y + 2z + 7 = 0 và (Q): 5x – 4y + 3z + 1 = 0. Gọi (R) là mặt phẳng đi qua gốc toạ độ O và vuông góc với cả (P) và (Q). Khi đó phương trình mặt phẳng (R) là
A. 2x – y + 2z = 0
B. 2x + y – 2z = 0
C. 2x + y – 2z + 1 = 0
D. 2x – y – 2z = 0.
Hướng dẫn giải:
Gọi , , lần lượt là véctơ pháp tuyến của (P), (Q), (R).
Theo bài ra ta có , .
Vì mặt phẳng (R) vuông góc với cả (P) và (Q) nên ta có:
Vì (R) là mặt phẳng đi qua gốc toạ độ O (0; 0; 0) nên phương trình mặt phẳng (R) là:
2(x – 0) + 1(y – 0) – 2(z – 0) = 0
2x + y – 2z = 0
Chọn B.
Dạng 5: Viết phương trình mặt phẳng đi qua hai điểm A, B và vuông góc với mặt phẳng (P).
Phương pháp giải:
Gọi , lần lượt là vectơ pháp tuyến của mặt phẳng và mặt phẳng (P).
Vì mặt phẳng đi qua A, B và vuông góc với mặt phẳng (P) nên ta có:
Từ đó viết phương trình mặt phẳng đi qua A (hoặc B) và có vectơ pháp tuyến là đã tính phía trên.
Ví dụ 5: Cho mặt phẳng (P) đi qua A (2; -1; 4), B (3; 2; -1) và vuông góc với mặt phẳng (Q): x + y + 2z – 3 = 0. Khi đó mặt phẳng (P) có phương trình là
A. 11x + 7y – 2z – 21 = 0.
B. 11x + 7y + 2z + 21 = 0.
C. 11x – 7y – 2z – 21 = 0
D. 11x – 7y + 2z + 21 = 0.
Hướng dẫn giải:
Ta có: , vectơ pháp tuyến của mặt phẳng (Q) là .
Mặt phẳng (P) đi qua A, B và vuông góc với mặt phẳng (Q) nhận làm véctơ pháp tuyến nên có phương trình:
11(x – 2) – 7(y + 1) – 2(z – 4) = 0
11x – 7y – 2z – 21 = 0.
Chọn C.
Dạng 6: Viết phương trình mặt phẳng đi qua ba điểm A, B, C cho trước.
Phương pháp giải:
Gọi là vectơ pháp tuyến của mặt phẳng .
Vì mặt phẳng đi qua A, B, C nên ta có
Từ đó viết phương trình mặt phẳng đi qua A (hoặc B, hoặc C) và có vectơ pháp tuyến là đã tính phía trên.
Ví dụ 6: Cho M (0; 3; -5), N (1; 0; 6), E (-4; 3; 0). Phương trình mặt phẳng (MNE) là:
A.
B.
C.
D.
Hướng dẫn giải:
Ta có ,
nên
Suy ra phương trình mặt phẳng (MNE) có một vectơ pháp tuyến là .
Vì mặt phẳng (MNE) đi qua N (1; 0; 6) nên phương trình mặt phẳng (MNE) là
15(x – 1) + 49(y – 0) + 12(z – 6) = 0
15x + 49y + 12z – 87 = 0
Chọn A.
Dạng 7: Viết phương trình mặt phẳng đi qua ba điểm A (a; 0; 0), B (0; b; 0), C (0; 0; c) . (Phương trình đoạn chắn).
Phương pháp giải:
Nếu mặt phẳng đi qua ba điểm A (a; 0; 0), B (0; b; 0), C (0; 0; c) thì phương trình có dạng
Ví dụ 7: Trong không gian với hệ toạ độ Oxyz, phương trình mặt phẳng đi qua 3 điểm A (-3; 0; 0), B (0; 4; 0), C (0; 0; -2) là
A.
B.
C.
D.
Hướng dẫn giải:
Gọi (P) là mặt phẳng đi qua 3 điểm A (-3; 0; 0), B (0; 4; 0), C (0; 0; -2), khi đó phương trình mặt phẳng (P) là:
Chọn D.
Dạng 8: Trong không gian Oxyz, cho điểm A, B, mặt phẳng (P) qua điểm A, B và tạo với mặt phẳng (Q) một góc bằng . Viết phương trình mặt phẳng (P).
Phương pháp giải:
+ Gọi phương trình của mặt phẳng (P) là ax + by + cz + d = 0.
+ Gọi vectơ pháp tuyến của mặt phẳng (P) và (Q) lần lượt là .
+ Mặt phẳng (P) qua A, B nên tọa độ A, B lần lượt thỏa mãn phương trình mặt phẳng (P) tìm được hai mối liên hệ giữa a, b, c, d.
+ Áp dụng điều kiện về góc giữa hai mặt phẳng , tìm được mối liên hệ giữa a, b, c, d, khử điều kiện để tìm được mối liên hệ giữa a, b (hoặc b, c; a, c).
+ Từ mối liên hệ giữa a, b ta chọn a để tìm b rồi suy ra phương trình mặt phẳng (P).
Ví dụ 8: Trong không gian Oxyz, cho điểm M (1; 0; 0) và N (0; 0; -1), mặt phẳng (P) qua điểm M, N và tạo với mặt phẳng (Q): x – y – 4 = 0 một góc bằng . Phương trình mặt phẳng (P) là
A.
B.
C.
D.
Hướng dẫn giải:
Gọi vectơ pháp tuyến của mặt phẳng (P) và (Q) lần lượt là .
Suy ra .
+ Gọi phương trình của mặt phẳng (P) là ax + by + cz + d = 0 .
+ (P) qua M (1; 0; 0) a + d = 0 (1)
(P) qua N (0; 0; -1) -c + d = 0 (2)
Từ (1) và (2) suy ra a + c = 0 hay c = -a
+ (P) hợp với (Q) góc
Với a = 0c = 0, chọn b = 1 ta được phương trình (P): y = 0.
Với a = -2b chọn b = -1 suy ra a = 2, phương trình mặt phẳng (P): 2x – y – 2z – 2 = 0.
Chọn A.
Dạng 9: Trong không gian Oxyz, cho các điểm A, B, C. Viết phương trình mặt phẳng (P) qua hai điểm A, B đồng thời khoảng cách từ C tới mặt phẳng (P) bằng d.
Phương pháp giải:
+ Gọi phương trình của mặt phẳng (P) là ax + by + cz + d = 0 .
+ Mặt phẳng (P) qua A, B nên tọa độ A, B lần lượt thỏa mãn phương trình mặt phẳng (P) tìm được hai mối liên hệ giữa a, b, c, d.
+ Áp dụng điều kiện về khoảng cách từ một điểm đến một mặt phẳng tìm được mối liên hệ giữa a, b, c, d; khử điều kiện để tìm được mối liên hệ giữa a, b (hoặc b, c; a, c).
+ Từ mối liên hệ giữa a, b chọn để tìm b rồi suy ra phương trình mặt phẳng (P).
Ví dụ 9: Trong không gian Oxyz, cho các điểm A (-1; 1; 0), B (0; 0; -2) và C (1; 1;1 1). Viết phương trình mặt phẳng (P) qua hai điểm A và B, đồng thời khoảng cách từ C tới mặt phẳng (P) bằng .
A.
B.
C.
D.
Hướng dẫn giải:
+ Gọi là véctơ pháp tuyến của (P).
+ Gọi phương trình của mặt phẳng (P) là ax + by + cz + d = 0 .
+ (P) qua A (-1; 1; 0) -a + b + d = 0. Suy ra b + d = a (1)
(P) qua B (0; 0; -2) -2c + d = 0. Suy ra d = 2c (2)
Từ (1) và (2) suy ra b = a – d = a – 2c
phương trình mặt phẳng (P) : x – y + z + 2 = 0.
+ a = 7c chọn a = 7 ; c = 1
phương trình mặt phẳng (P) : 7x + 5y + z + 2 = 0.
Chọn B.
III. BÀI TẬP ÁP DỤNG
Câu 1. Trong không gian Oxyz cho mặt phẳng : 2x + 3z – 1 = 0. Vectơ nào dưới đây là một vectơ pháp tuyến của ?
A.
B.
C.
D.
Câu 2. Trong không gian Oxyz, cho hai điểm A (3; -2; 1) và B (5; -4; 3). Mặt phẳng trung trực của đoạn thẳng AB có phương trình là
A. x – y + z + 5 = 0.
B. x – y + z + 11 = 0.
C. x – y + z – 6 = 0.
D. x – y + z – 9 = 0.
Câu 3. Trong không gian Oxyz, mặt phẳng đi qua điểm M (1; 2; 3) và song song với mặt phẳng (P): x – 2y + z – 3 = 0 có phương trình là
A. x – 2y + z = 0
B. x + 2y + 3z = 0.
C. x – 2y + z + 3 = 0.
D. x – 2y + z – 8 = 0.
Câu 4. Phương trình mặt phẳng đi qua ba điểm M (0; 1; 2), N (-3; 0; 8), E (4; -5; 0) là:
A. 19x + 9y + 11z – 23 = 0.
B. 19x + 15y + 11z – 37 = 0.
C. 19x + 9y + 11z – 31 = 0.
D. -17x + 9y + 11z – 31 = 0.
Câu 5. Trong không gian Oxyz, cho ba điểm A (4; 3; 2), B (-1; -2; 1), C (-2; 2; -1). Phương trình mặt phẳng đi qua A và vuông góc với BC là
A. x – 4y – 2z – 4 = 0
B. x – 4y – 2z + 4 = 0
C. x – 4y + 2z + 4 = 0
D. x + 4y – 2z – 4 = 0.
Câu 6: Trong không gian với hệ toạ độ Oxyz. Mặt phẳng (P) đi qua các điểm A (-1; 0; 0), B (0; 2; 0), C (0; 0; -2) có phương trình là
A. -2x + y + z – 2 = 0
B. -2x – y – z + 2 = 0.
C. -2x + y – z – 2 = 0
D. -2x + y – z + 2 = 0.
Câu 7: Trong không gian với hệ toạ độ Oxyz, gọi là mặt phẳng qua các hình chiếu của A (5; 4; 3) lên các trục tọa độ. Phương trình của mặt phẳng là
A.
B. 12x + 15y + 20z + 60 = 0.
C. 12x + 15y + 20z – 60 = 0.
D.
Câu 8: Trong không gian Oxyz, cho hai mặt phẳng (P): x + y + z – 3 = 0 và (Q): x – y + z – 1 = 0. Viết phương trình mặt phẳng (R) vuông góc với (P) và (Q) sao cho khoảng cách từ gốc tọa độ O đến (R) bằng .
A.
B.
C.
D.
Câu 9: Trong không gian Oxyz biết mặt phẳng ax + by + cz + 5 = 0 qua A (1; 2; 3) và vuông góc với hai mặt phẳng (P): x + y + z – 3 = 0, (Q): 2x – y + z – 5 = 0. Giá trị a + b - c bằng
A. 3
B. 6
C. 5
D. 4
Câu 10: Trong không gian Oxyz, cho A (1;2;3), mặt phẳng (P): x + y + z – 15 = 0. Viết phương trình mặt phẳng (Q) song song với mặt phẳng (P) biết (Q) cách điểm A một khoảng bằng .
A. x + y + z – 15 = 0
B.
C. x + y + z + 3 = 0
D.
ĐÁP ÁN
Xem thêm các dạng Toán lớp 12 hay, chi tiết khác:
Các bài toán về tọa độ điểm, tọa độ vectơ và cách giải
Tích vô hướng và tích có hướng của hai vectơ và cách giải
Các dạng toán về phương trình đường thẳng và cách giải
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.