Bài 4.26 trang 94 Toán 11 Tập 1 | Kết nối tri thức Giải Toán lớp 11

305

Với giải Bài 4.26 trang 94 Toán 11 Tập 1 Kết nối tri thức chi tiết trong Bài 13: Hai mặt phẳng song song giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Bài 4.26 trang 94 Toán 11 Tập 1 | Kết nối tri thức Giải Toán lớp 11

Bài 4.26 trang 94 Toán 11 Tập 1: Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi G và G' lần lượt là trọng tâm của hai tam giác ABC và A'B'C'.

a) Chứng minh rằng tứ giác AGG'A' là hình bình hành.

b) Chứng minh rằng AGC.A'G'C' là hình lăng trụ.

Lời giải:

Toán 11 (Kết nối tri thức) Bài 13: Hai mặt phẳng song song (ảnh 29)

a) Gọi M và N lần lượt là trung điểm của BC và B'C'. Khi đó ta có MN là đường trung bình của hình bình hành BCC'B', suy ra MN // BB' và MN = BB'.

Do ABC.A'B'C' là hình lăng trụ tam giác nên AA' // BB' và AA' = BB'.

Từ đó suy ra MN // AA' và MN = AA'. Do đó, AMNAlà hình bình hành.

Suy ra AM // A'N và AM = A'N.

Vì G và G' lần lượt là trọng tâm của hai tam giác ABC và A'B'C' nên A'G'A'N=AGAM=23 .

Do đó, AG = A'G' và AG // A'G'. Từ đó suy ra tứ giác AGG'A' là hình bình hành.

b) Vì tứ giác AGG'A' là hình bình hành nên AA' // GG'.

Tương tự ta chứng minh được CGG'Clà hình bình hành nên CC' // GG'.

Do đó, ba đường thẳng AA', GG' và CC' đôi một song song.

Lại có hai mặt phẳng (AGC) và (A'G'C') song song với nhau.

Vậy AGC.A'G'C' là hình lăng trụ tam giác.

Đánh giá

0

0 đánh giá