Bài 4.41 trang 103 Toán 11 Tập 1 | Kết nối tri thức Giải Toán lớp 11

361

Với giải Bài 4.41 trang 103 Toán 11 Tập  1Kết nối tri thức chi tiết trong Bài tập cuối chương 4 giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Bài 4.41 trang 103 Toán 11 Tập 1 | Kết nối tri thức Giải Toán lớp 11

Bài 4.41 trang 103 Toán 11 Tập 1: Cho hình chóp S.ABCD có đáy ABCD là hình thang, AB // CD và AB < CD. Xác định giao tuyến của hai mặt phẳng sau:

a) (SAD) và (SBC);

b) (SAB) và (SCD);

c) (SAC) và (SBD).

Lời giải:

Toán 11 (Kết nối tri thức): Bài tập cuối chương 4 (ảnh 6)

a) Ta có: ABCD là hình thang có hai đáy AB và CD. Trong mặt phẳng (ABCD), gọi F là giao điểm của AD và BC. Khi đó F thuộc AD nên F thuộc mặt phẳng (SAD), F thuộc BC nên F thuộc mặt phẳng (SBC), vậy F là một điểm chung của hai mặt phẳng (SAD) và (SBC).

Lại có S là một điểm chung khác của hai mặt phẳng (SAD) và (SBC).

Do vây, SF là giao tuyến của hai mặt phẳng (SAD) và (SBC).

b) Hai mặt phẳng (SAB) và (SCD) lần lượt chứa hai đường thẳng AB và CD song song với nhau. Khi đó giao tuyến của hai mặt phẳng này là đường thẳng đi qua điểm chung S và song song với AB, CD.

Qua S, vẽ đường thẳng d song song với AB, CD.

Vậy d là giao tuyến của hai mặt phẳng (SAB) và (SCD).

c) Trong mặt phẳng (ABCD), gọi E là giao điểm của AC và BD. Vì E thuộc AC nên E thuộc mặt phẳng (SAC), vì E thuộc BD nên E thuộc mặt phẳng (SBD). Do vậy, E là một điểm chung của hai mặt phẳng (SAC) và (SBD).

Lại có S là một điểm chung khác của hai mặt phẳng (SAC) và (SBD).

Vậy SE là giao tuyến của hai mặt phẳng (SAC) và (SBD).

Đánh giá

0

0 đánh giá