Lý thuyết Giới hạn của dãy số (Kết nối tri thức) hay, chi tiết | Lý thuyết Toán 11

515

Toptailieu.vn xin giới thiệu Lý thuyết Giới hạn của dãy số (Kết nối tri thức) hay, chi tiết | Lý thuyết Toán 11 Bài viết gồm phần lý thuyết trọng tâm nhất được trình bày một cách dễ hiểu, dễ nhớ bên cạnh đó là bộ câu hỏi trắc nghiệm có hướng dẫn giải chi tiết để học sinh có thể vận dụng ngay lý thuyết, nắm bài một cách hiệu quả nhất. Mời các bạn đón xem:

Lý thuyết Giới hạn của dãy số (Kết nối tri thức) hay, chi tiết | Lý thuyết Toán 11

Bài giải Bài 15: Giới hạn của dãy số

A. Lý thuyết Giới hạn của dãy số

1. Giới hạn hữu hạn của dãy số

Ta nói dãy số (un) có giới hạn 0 khi n dần tới dương vô cực, nếu |un| có thể nhỏ hơn một số dương bé tùy ý , kể tử một số hạng nào đó trở đi, kí hiệu limn+un=0 hay un0 khi  n+.

Ta nói dãy số (un) có giới hạn là số thực a khi n dần tới dương vô cực, nếu limn+(una)=0, kí hiệu limn+un=a hay una khi  n+.

 

* Chú ý: Nếu un=c (c là hằng số) thì limn+un=c

2. Định lí về giới hạn hữu hạn của dãy số

a, Nếu limn+un=a,limn+vn=b thì

limn+(un±vn)=a±b

limn+(un.vn)=a.b

limn+(unvn)=ab(b0)

b, Nếu un0 thì với mọi n và limn+un=a thì a0 và limn+un=a.

3. Tổng của cấp số nhân lùi vô hạn

S=u11q(|q|<1)

4. Giới hạn vô cực của dãy số

Dãy số (un) được gọi là có giới hạn +khi n+nếu un có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi, kí hiệu limx+un=+ hay un+ khi n+.

 

Dãy số (un) được gọi là có giới hạn  khi n+ nếu limx+(un)=+, kí hiệu limx+un= hay un khi n+.

*Quy tắc:

Nếu limx+un=a và limx+vn=+(hoặclimx+vn=) thì limn+(unvn)=0.

Nếu limx+un=a>0 và limx+vn=0,n thì limn+(unvn)=+.

Nếu limx+vn=a>0 và limx+un=+ thì limn+(un.vn)=+.

Giới hạn của dãy số (ảnh 1)

B. Bài tập Giới hạn của dãy số.

Bài 1: Tìm các giới hạn sau:

a) limn+(2n3-3n+2);

b) limn+2n+1n2;

c) Lý thuyết Toán 11 Kết nối tri thức Bài 15: Giới hạn của dãy số

Hướng dẫn giải

a)limn+(2n3-3n+2) = limn+Lý thuyết Toán 11 Kết nối tri thức Bài 15: Giới hạn của dãy số = +

Vì limn+n3=+ và Lý thuyết Toán 11 Kết nối tri thức Bài 15: Giới hạn của dãy số = 2.

b) limn+2n+1n2=limn+2+1n12n= 2.

c) Lý thuyết Toán 11 Kết nối tri thức Bài 15: Giới hạn của dãy số

=limn+4+3n+1n296n+1n2=49

Bài 2: Cho hai dãy số không âm (un) và (vn) với limn+un=3 và limn+vn=5. Tìm giới hạn của: limn+vn2vnun.

Hướng dẫn giải

Ta có: limn+vn=5, do đó limn+vn2=limn+(vn . un) = 5.5 = 25.

limn+(vn - un) = 5-3 = 2.

Vậy limn+vn2vnun = 252.

Bài 3: Tính tổng của cấp số nhân lùi vô hạn: 3; – 1;Lý thuyết Toán 11 Kết nối tri thức Bài 15: Giới hạn của dãy số

Hướng dẫn giải

un là cấp số nhân lùi vô hạn có số hạng đầu u1 = 3 và công bội q = 13.

Tổng của cấp số nhân này là: S = u11q = 31+13=94

Bài 4: Một cấp số nhân lùi vô hạn có tổng các số hạng bằng 56, tổng bình phương các số hạng bằng 448. Số hạng đầu tiên của cấp số nhân đó là bao nhiêu?

Hướng dẫn giải

Lý thuyết Toán 11 Kết nối tri thức Bài 15: Giới hạn của dãy số

u1211q2=448

⇒ Lý thuyết Toán 11 Kết nối tri thức Bài 15: Giới hạn của dãy số

Suy ra: q = 34.

Ta tìm được: u1 = 14.

Xem thêm Lý thuyết các bài  Toán 11 Kết nối tri thức hay, chi tiết khác:

Lý thuyết Bài 14: Phép chiếu song song

Lý thuyết Bài 16: Giới hạn của hàm số

Lý thuyết Bài 17: Hàm số liên tục

Từ khóa :
Giải bài tập
Đánh giá

0

0 đánh giá