Với giải Khám phá 1 trang 38 Chuyên đề Toán 11 Chân trời sáng tạo chi tiết trong Bài tập cuối chuyên đề 1 giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Chuyên đề Toán 11. Mời các bạn đón xem:
Trong Hình 1, tìm hai phép biến hình để biến tam giác ABC thành tam giác A’B’C'
Khám phá 1 trang 38 Chuyên đề Toán 11: Trong Hình 1, tìm hai phép biến hình để biến tam giác ABC thành tam giác A’B’C’.
Lời giải:
Để tìm phép biến hình biến ∆ABC thành ∆A’B’C’, ta tìm phép biến hình biến ∆ABC thành ∆A1B1C1 và tìm phép biến hình biến ∆A1B1C1 thành ∆A’B’C’.
⦁ Để tìm phép biến hình biến ∆ABC thành ∆A1B1C1, ta tìm phép biến hình biến các điểm A, B, C theo thứ tự thành các điểm A1, B1, C1.
Ta thấy các đường thẳng AA1, BB1, CC1 đồng quy tại O.
Xét phép vị tự tâm O, tỉ số k biến các điểm A, B, C theo thứ tự thành các điểm A1, B1, C1.
Ta có V(O, k)(A) = A1.
Suy ra và OA1 = |k|.OA.
Vì A, A1 nằm cùng phía đối với O nên k > 0.
Do đó .
Tương tự ta cũng có
Do đó
Vì vậy là phép biến hình biến ∆ABC thành ∆A1B1C1.
⦁ Để tìm phép biến hình biến ∆A1B1C1 thành ∆A’B’C’, ta tìm phép biến hình biến các điểm A1, B1, C1 theo thứ tự thành các điểm A’, B’, C’.
Ta thấy d là đường trung trực của đoạn A1A’.
Suy ra Đd(A1) = A’.
Chứng minh tương tự, ta được Đd(B1) = B’ và Đd(C1) = C’.
Vì vậy Đd là phép biến hình biến ∆A1B1C1 thành ∆A’B’C’.
Vậy hai phép biến hình biến tam giác ABC thành tam giác A’B’C’ là biến ∆ABC thành ∆A1B1C1 và Đd biến ∆A1B1C1 thành ∆A’B’C’.
Xem thêm các bài giải Chuyên đề Toán 11 Chân trời sáng tạo hay, chi tiết khác:
Vận dụng 1 trang 39 Chuyên đề Toán 11: Tìm phép đồng dạng biến hình (A) thành hình (C).
Vận dụng 2 trang 40 Chuyên đề Toán 11: Tìm các cặp hình đồng dạng với nhau có trong Hình 5.
Bài 4 trang 40 Chuyên đề Toán 11: Tìm các hình đồng dạng với nhau trong Hình 6.
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.