Chiếc cầu dây văng một nhịp được thiết kế hai bên thành cầu có dạng parabol

522

Với giải Bài 9 trang 57 Toán 10 Tập 1 Chân trời sáng tạo chi tiết trong Bài 2. Hàm số bậc hai giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem: 

Chiếc cầu dây văng một nhịp được thiết kế hai bên thành cầu có dạng parabol

Bài 9 trang 57 Toán 10 Tập 1: Chiếc cầu dây văng một nhịp được thiết kế hai bên thành cầu có dạng parabol và được cố định bằng các dây cáp song song.

Dựa vào bản vẽ ở Hình 14, hãy tính chiều dài tổng cộng của các dây cáp dọc ở hai mặt bên. Biết:

-  Dây dài nhất là 5 m, dây ngắn nhất là 0,8 m. Khoảng cách giữa các dây bằng nhau.

-  Nhịp cầu dài 30 m.

-  Cần tính thêm 5% chiều dài mỗi sợi dây cáp để neo cố định.

Bài 9 trang 57 Toán 10 Tập 1 Chân trời sáng tạo (ảnh 1)

Phương pháp giải 

Gắn hệ trục tọa độ, gọi công thức của hàm số có đồ thị là thành cầu.

Xác định hàm số và xác định tung độ của điểm có hoành độ là hình chiếu của các dây cáp dọc.

Lời giải 

Gọi y=ax2+bx+c là công thức của hàm số có đồ thị là thành cầu. 

Chọn hệ trục tọa độ Oxy như hình dưới:

 Bài 9 trang 57 Toán 10 Tập 1 Chân trời sáng tạo (ảnh 2)

Khi đó độ dài dây cáp dọc ở mỗi mặt bên là tung độ của điểm biểu diễn tương ứng.

Ở mỗi mặt: có 21 dây cáp dọc, tương ứng cho 20 khoảng cách giữa chúng.

Khoảng cách giữa hai dây cáp liền kề là: 30:20=1,5(m)

Khi đó: x0=0;x1=1,5;x2=3;x3=4,5;...;xn=1,5.n

Dễ thấy: các điểm có tọa độ (0; 5), (x10;0,8), (x20;5) thuộc đồ thị hàm số.

(Trong đó: x10=10.1,5=15;x20=20.1,5=30.)

Suy ra:

f(0)=a.02+b.0+c=5c=5

Và f(1)=a.102+b.10+c=0,8100a+10b+5=0,8

f(2)=a.302+b.30+c=5900a+30b+5=5

Giải hệ phương trình {100a+10b+5=0,8900a+30b+5=5 ta được a=211000;b=63100

Như vậy y=211000x263100x+5

Gọi y0,y1,y2,..y20 là tung độ của các điểm có hoành độ lần lượt là x0,x1,x2,..x20

Ta có:

y0=5y1=211000.1,5263100.1,5+5y2=211000.(2.1,5)263100.(2.1,5)+5=22.211000.1,522.63100.1,5+5...yn=211000.(n.1,5)263100.(2.1,5)+5=n2.211000.1,52n.63100.1,5+5T=y0+y1+y2+..+y20=5+211000.1,52.(1+22+...+202)63100.1,5.(1+2+...+20)+5.20

Mà 1+22+...+202=2870;1+2+...+20=210

T=5+211000.1,52.287063100.1,5.210+5.2042,16(m)

Tổng chiều dài của các dây cáp dọc ở hai mặt bên là: 42,16.2=84,32(m)

Vậy chiều dài tổng cộng của các dây cáp dọc ở hai mặt bên là 84,32m.

Xem thêm các bài giải Toán 10 Chân trời sáng tạo hay, chi tiết khác:

HĐ Khởi động trang 49 Toán 10 Tập 1:

HĐ Khám phá 1 trang 49 Toán 10 Tập 1Khai triển biểu thức của các hàm số sau và sắp xếp theo thứ tự lũy thừa của x giảm dần (nếu có thể). Hàm số nào có lũy thừa bậc cao nhất của x là bậc hai?...

Thực hành 1 trang 49 Toán 10 Tập 1Hàm số nào trong các hàm số được cho ở Hoạt động khám phá 1 là hàm số bậc hai?...

HĐ Khám phá 2 trang 49 Toán 10 Tập 1a) Xét hàm số có bảng giá trị...

Thực hành 2 trang 52 Toán 10 Tập 1: Vẽ đồ thị hàm số  rồi so sánh đồ thị hàm số này với đồ thị hàm số trong Ví dụ 2z. Nếu nhận xét về hai đồ thị này...

HĐ Khám phá 3 trang 52 Toán 10 Tập 1Từ đồ thị hàm số bậc hai cho ở hai hình sau, tìm khoảng đồng biến và nghịch biến của hàm số trong mỗi trường hợp...

Thực hành 3 trang 53 Toán 10 Tập 1Tìm khoảng đồng biến, khoảng nghịch biến của hàm số  Hàm số này có thể đạt giá trị bằng -1 không? Tại sao?...

Vận dụng trang 54 Toán 10 Tập 1Trong bài toán ứng dụng, khi chơi trên sân cầu lông đơn, các lần phát cầu với thông tin như sau có được xem là hợp lệ không? (Các thông tin không được đề cập thì vẫn giữ như trong giả thiết bài toán trên)...

Bài 1 trang 56 Toán 10 Tập 1Hàm số nào sau đây là hàm số bậc hai?...

Bài 2 trang 56 Toán 10 Tập 1Tìm điều kiện của m để mỗi hàm số sau là hàm số bậc hai...

Bài 3 trang 56 Toán 10 Tập 1Lập bảng biến thiên của hàm số  Hàm số này có giá trị lớn nhất hay giá trị nhỏ nhất? Tìm giá trị đó...

Bài 4 trang 56 Toán 10 Tập 1: Cho hàm số bậc hai  có...

Bài 5 trang 56 Toán 10 Tập 1Cho hàm số . Hãy xác định giá trị của m để hàm số đạt giá trị nhỏ nhất bằng 5...

Bài 6 trang 56 Toán 10 Tập 1Vẽ đồ thị các hàm số sau...

Bài 7 trang 56 Toán 10 Tập 1Hãy xác định đúng đồ thị của mỗi hàm số sau trên Hình 12...

Bài 8 trang 57 Toán 10 Tập 1Tìm công thức của hàm số bậc hai có đồ thị như Hình 13...

Đánh giá

0

0 đánh giá