Trong Hình 14, tìm phép vị tự được dùng để biến bốn tam giác nhỏ thành bốn tam giác lớn

129

Với giải Bài 8 trang 36 Chuyên đề Toán 11 Chân trời sáng tạo chi tiết trong Bài 6: Phép vị tự giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Chuyên đề Toán 11. Mời các bạn đón xem:

Trong Hình 14, tìm phép vị tự được dùng để biến bốn tam giác nhỏ thành bốn tam giác lớn

Bài 8 trang 36 Chuyên đề Toán 11: Trong Hình 14, tìm phép vị tự được dùng để biến bốn tam giác nhỏ thành bốn tam giác lớn.

Chuyên đề Toán 11 (Chân trời sáng tạo) Bài 6: Phép vị tự (ảnh 23)

Lời giải:

Chuyên đề Toán 11 (Chân trời sáng tạo) Bài 6: Phép vị tự (ảnh 24)

Giả sử ta chọn điểm O như hình vẽ.

Ta đặt bốn tam giác nhỏ là ∆OAB, ∆OBC, ∆OCD và ∆ODE và bốn tam giác lớn là ∆OA’B’, ∆OB’C’, ∆OC’D’ và ∆OD’E’ (hình vẽ).

Yêu cầu bài toán đưa về tìm phép vị tự biến ∆OAB, ∆OBC, ∆OCD và ∆ODE lần lượt thành ∆OA’B’, ∆OB’C’, ∆OC’D’ và ∆OD’E’.

Tức là ta đi tìm phép vị tự biến các điểm O, A, B, C, D, E lần lượt thành O, A’, B’, C’, D’, E’.

Ta thấy O là giao điểm của các đường thẳng AA’, BB’, CC’, DD’, EE’.

Ta chứng minh các điểm O, A’, B’, C’, D’, E’ lần lượt là ảnh của các điểm O, A, B, C, D, E qua V(O, k).

Thật vậy, ta có V(O, k)(A) = A’.

Suy ra OA'=kOA và OA’ = |k|.OA.

Vì A, A’ nằm cùng phía đối với O nên k > 0.

Do đó k=OA'OA.

Mà k=OA'OA=OB'OB nên OB'=kOB, do đó V(O, k)(B) = B’.

Tương tự như trên ta chứng minh được V(O, k)(C) = C’, V(O, k)(D) = D’, V(O, k)(E) = E’.

Vậy VO,OA'OA là phép vị tự cần tìm.

Đánh giá

0

0 đánh giá