Với giải Bài 3 trang 35 Chuyên đề Toán 11 Chân trời sáng tạo chi tiết trong Bài 6: Phép vị tự giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Chuyên đề Toán 11. Mời các bạn đón xem:
Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) có phương trình. Viết phương trình ảnh của (C)
Bài 3 trang 35 Chuyên đề Toán 11: Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) có phương trình:
(C): x2 + y2 + 4x – 2y – 4 = 0.
Viết phương trình ảnh của (C)
a) qua phép vị tự tâm O, tỉ số k = 2;
b) qua phép vị tự tâm I(1; 1), tỉ số k = –2.
Lời giải:
Đường tròn (C): x2 + y2 + 4x – 2y – 4 = 0 có tâm A(–2; 1) và bán kính .
a) Gọi đường tròn (C’) là ảnh của đường tròn (C) qua V(O, 2)
Khi đó (C’) có tâm ảnh của A qua V(O, 2) và bán kính R’ = |2|.R = 2.3 = 6.
Gọi A’(x’; y’) là ảnh của A qua V(O, 2).
Suy ra với và
Do đó
Vì vậy A’(–4; 2).
Vậy phương trình đường tròn (C’) là: (x + 4)2 + (y – 2)2 = 36.
b) Gọi đường tròn (C’’) là ảnh của đường tròn (C) qua V(I, –2).
Khi đó (C’’') có tâm ảnh của A qua V(I, –2) và bán kính R’’ = |–2|.R = 2.3 = 6.
Gọi A”(x”; y”) là ảnh của A qua V(I, –2).
Suy ra với và
Do đó
Vì vậy
Suy ra tọa độ A”(7; 1).
Vậy phương trình đường tròn (C”) là: (x – 7)2 + (y – 1)2 = 36.
Xem thêm các bài giải Chuyên đề Toán 11 Chân trời sáng tạo hay, chi tiết khác:
Khởi động trang 30 Chuyên đề Toán 11: Trong sách báo, tranh ảnh hay trong thực tế có những hình ảnh với hình dạng hoàn toàn giống nhau, chỉ khác nhau về kích thước. Những hình như vậy có liên quan gì về mặt hình học và phép biến hình nào đã tạo ra hình này từ hình kia?
Khám phá 1 trang 30 Chuyên đề Toán 11: Trong Hình 1, cho biết A’, B’, C’ lần lượt là trung điểm của OA, OB, OC.
Thực hành 1 trang 31 Chuyên đề Toán 11: Trong mặt phẳng tọa độ Oxy, cho điểm M(3; 9). Tìm tọa độ các điểm M1 và M2 lần lượt là ảnh của M qua các phép vị tự V(O, 3) và V(O, –2).
Vận dụng 1 trang 32 Chuyên đề Toán 11: Thước vẽ truyền là một dụng cụ gồm bốn thanh gỗ hoặc kim loại được ghép với nhau nhờ bốn khớp xoay tại các điểm A, B, C, D sao cho ABCD là hình bình hành và ba điểm O, D, D’ thẳng hàng. Khi sử dụng, người vẽ ghim cố định điểm O xuống mặt giấy (thước vẫn có thể xoay quanh O). Đặt hai cây bút tại hai điểm D và D’. Khi đầu bút D vẽ hình ℋ, đầu bút D’ sẽ tự động vẽ truyền cho ta hình ℋ ’ là ảnh của ℋ.
Khám phá 2 trang 32 Chuyên đề Toán 11: Gọi M’ và N’ lần lượt là ảnh của M và N qua phép vị tự V(O, k).
Khám phá 3 trang 33 Chuyên đề Toán 11: Gọi A’, B’ và C’ lần lượt là ảnh của ba điểm thẳng hàng A, B, C qua phép vị tự V(O, k). Cho biết có bằng nhau không?
Thực hành 2 trang 33 Chuyên đề Toán 11: Cho tam giác ABC có G, H, O lần lượt là trọng tâm, trực tâm, tâm đường tròn ngoại tiếp tam giác. Gọi A’, B’, C’ lần lượt là trung điểm các cạnh BC, CA, AB.
Khám phá 4 trang 34 Chuyên đề Toán 11: Cho phép vị tự V(O, k) và đường tròn (C) tâm I bán kính r. Xét điểm M thuộc (C), gọi I’ và M’ là ảnh của I và M qua phép vị tự V(O, k).
Vận dụng 2 trang 35 Chuyên đề Toán 11: Vẽ Hình 11 ra giấy kẻ ô li và tìm ảnh của tứ giác ABCD qua phép vị tự .
Bài 1 trang 35 Chuyên đề Toán 11: Các phép biến hình sau có phải là phép vị tự không: phép đối xứng tâm, phép đối xứng trục, phép đồng nhất, phép tịnh tiến theo vectơ khác?
Bài 2 trang 35 Chuyên đề Toán 11: Các khẳng định sau đúng hay sai?
Bài 3 trang 35 Chuyên đề Toán 11: Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) có phương trình
Bài 4 trang 36 Chuyên đề Toán 11: Hãy xác định phép vị tự biến đường tròn (O; R) thành đường tròn (O’; R’) (R ≠ R’) trong các trường hợp sau:
Bài 5 trang 36 Chuyên đề Toán 11: Cho hai đường tròn (I; R) và (I’; R’) (Hình 12) có tâm phân biệt và bán kính khác nhau. Hãy chứng minh có hai phép vị tự biến đường tròn (I; R) thành đường tròn (I’; R’).
Bài 6 trang 36 Chuyên đề Toán 11: Cho hình thang ABCD có hai đáy là AB và CD
Bài 7 trang 36 Chuyên đề Toán 11: Tìm các tỉ số vị tự của phép biến hình được thực hiện trên cây thước vẽ truyền trong Hình 13.
Bài 8 trang 36 Chuyên đề Toán 11: Trong Hình 14, tìm phép vị tự được dùng để biến bốn tam giác nhỏ thành bốn tam giác lớn.