Toptailieu.vn xin giới thiệu Lý thuyết Phép chia đa thức cho đơn thức (Kết nối tri thức) hay, chi tiết | Lý thuyết Toán 8. Bài viết gồm phần lý thuyết trọng tâm nhất được trình bày một cách dễ hiểu, dễ nhớ bên cạnh đó là bộ câu hỏi trắc nghiệm có hướng dẫn giải chi tiết để học sinh có thể vận dụng ngay lý thuyết, nắm bài một cách hiệu quả nhất. Mời các bạn đón xem:
Bài giải Bài 5: Phép chia đa thức cho đơn thức
A. Lý thuyết Phép chia đa thức cho đơn thức
+ Chia đơn thức cho đơn thức như thế nào?
a. Đơn thức A chia hết cho đơn thức B (B ≠ 0) khi mỗi biến của B đều là biến của A với số mũ không lớn hơn số mũ của nó trong A.
b. Muốn chia đơn thức A cho đơn thức B (trường hợp chia hết), ta làm như sau:
- Chia hệ số của đơn thức A cho hệ số của đơn thức B;
- Chia lũy thừa của từng biến A cho lũy thừa của cùng biến đó trong B;
- Nhân các kết quả vừa tìm được với nhau.
Ví dụ:
16x4y3 : (-8x3y2)
= (16 : (-8)).(x4 : x3).(y3 : y2)
= -2xy
+ Chia đa thức cho đơn thức như thế nào?
Đa thức A chia hết cho đơn thức B nếu mọi hạng tử của A đều chia hết cho B.
Muốn chia đa thức A cho đơn thức B (trường hợp chia hết), ta chia từng hạng tử của A cho B rồi cộng các kết quả với nhau.
Ví dụ:
(x2y + y2x) : xy
= x2y : xy + y2x : xy
= x + y
(-12x4y + 4x3 -8 x2y2) : (-4x2)
= (-12x4y); (-4x2) + (4x3) : (-4x2) - (8x2y2) : (-4x2)
= 3x2y - x + 2y2
B. Bài tập Phép chia đa thức cho đơn thức
Đang cập nhật ...
Xem thêm các bài lý thuyết Toán 8 Kết nối tri thức hay, chi tiết khác:
Bài 6: Hiệu hai bình phương. Bình phương của một tổng hay một hiệu
Bài 7: Lập phương của một tổng. Lập phương của một hiệu
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.