Toptailieu.vn biên soạn và giới thiệu Công thức số hạng tổng quát của cấp số nhân (50 bài tập minh họa) HAY NHẤT 2024 gồm đầy đủ các phần: Lý thuyết, phương pháp giải, bài tập minh họa có lời giải chi tiết giúp học sinh làm tốt bài tập Toán 11 từ đó học tốt môn Toán. Mời các bạn đón xem:
Công thức số hạng tổng quát của cấp số nhân (50 bài tập minh họa) HAY NHẤT 2024
1. Lý thuyết
- Dãy số (un) là một cấp số nhân khi không phụ thuộc vào n và q là công bội.
- Công thức số hạng tổng quát: un = u1 . qn - 1 với
2. Công thức
- Công thức số hạng tổng quát: un = u1.qn - 1 với
Do đó để tìm được số hạng tổng quát, ta cần tìm số hạng đầu tiên và công bội của cấp số nhân.
3. Ví dụ minh họa
Ví dụ 1: Cho cấp số nhân (un) với u1 = 2 và u2 = –6.
a) Xác định công thức số hạng tổng quát của cấp số nhân.
b) Tính số hạng thứ 300 của cấp số nhân.
c) Số 118098 là số hạng thứ bao nhiêu của cấp số nhân.
Lời giải
a) Ta có:
Số hạng tổng quát của cấp số nhân: un = u1.qn – 1 = 2.(–3)n-1
b) Số hạng thứ 300 của cấp số nhân: u300 = 2.( –3)300-1 = – 2.3299.
c) Gọi số hạng thứ k là số 118098, ta có uk = u1.qk-1 = 118098
Vậy số 118098 là số hạng thứ 11 của cấp số nhân.
Ví dụ 2: Cho cấp số nhân (un) với .
a) Tìm u1 và công bội d.
b) Xác định công thức tổng quát của cấp số nhân.
c) Tính số hạng thứ 250 của cấp số nhân.
Lời giải
a) Ta có:
Vậy .
b) Số hạng tổng quát: .
c) Số hạng thứ 250 của cấp số nhân:
u250 = 4250 - 3 = 4247
4. Bài tập vận dụng
Câu 1: Cho cấp số nhân (un) với u1 = 3 và u8 = 384. Hỏi 12288 là số hạng thứ bao nhiêu của dãy?
Hướng dẫn giải:
Ta có: u8 = u1 . q7 nên
Suy ra: Số hạng tổng quát của cấp số nhân là; un = 3. 2n-1.
Ta có:
Vậy 12288 là số hạng thứ 13 của cấp số nhân.
Chọn A.
Câu 2: Cho cấp số nhân (un) với u4 = 108 và u2 = 3. Viết số hạng tổng quát của cấp số nhân; biết q > 0 ?
Hướng dẫn giải:
Ta có:
Khi đó;
=> Số hạng tổng quát của cấp số nhân là:
Chọn C.
Câu 3: Cho cấp số nhân (un) với u4 = 108 và u2 = 3. Viết số hạng tổng quát của cấp số nhân; biết q > 0 ?
Hướng dẫn giải:
Ta có:
Khi đó;
=> Số hạng tổng quát của cấp số nhân là:
Chọn C.
Câu 4: Cho cấp số nhân (un) với u1 = 2 và u7 = 128. Tìm q.
A .q= 2 B. q= - 2
C. q= ±3 D. q= ±2
Hướng dẫn giải:
Ta có:
Vậy q = 2 hoặc q = −2
Chọn D.
Câu 5: Cho cấp số nhân (un) với u1 = 3; q = 5. Viết 3 số hạng tiếp theo.
A. 15, 95, 275 B.15, 75, 375
C. 75, 375, 1975 D. Đáp án khác
Hướng dẫn giải:
Ta có:
Chọn B .
Câu 6: Cho cấp số nhân (un) thỏa mãn: . Tìm công sai của cấp số nhân đã cho?
Hướng dẫn giải:
Theo giả thiết ta có:
Chọn C.
Câu 7: Giữa các số 160 và 5 hãy chèn vào 4 số nữa để tạo thành một cấp số nhân. Tính tổng bốn số đó?
Hướng dẫn giải:
Nếu giữa các số 160 và 5 ta chèn vào 4 số nữa để tạo thành cấp số nhân. Khi đó; ta được cấp số nhân có số hạng đầu là u1 = 160 và số hạng thứ 6 là u6 = 5.
Suy ra:
=> 4 số hạng ta cần thêm vào là: u2 = 80; u3 = 40; u4 = 20 và u5 = 10.
Suy ra tổng bốn số cần tìm là: 80 + 40 + 20 + 10= 150.
Chọn C.
Câu 8: Cho cấp số nhân (un) có các số hạng khác không, tìm u1 biết
Hướng dẫn giải:
Ta có:
Từ ( 1) và (2) lấy vế chia vế ta được:
Thay vào (1) ta tìm được u1 = 1 hoặc u1 = 8.
Chọn B.
Câu 9: Cho (un) là cấp số nhân thỏa mãn: . Tìm u1 và q?
Hướng dẫn giải:
Theo giả thiết ta có:
Lấy (1) chia (2) vế chia vế ta được:
Đặt: . Điều kiện |t| ≥ 2
Với
Nếu
Nếu
Chọn C.
Câu 10: Cho cấp số nhân (un) thỏa mãn: . Tìm số hạng đầu tiên của cấp số nhân?
Hướng dẫn giải:
Theo giả thiết ta có:
Từ (1) và u1 q ≠ 0 suy ra:
Từ (2) suy ra:
Chọn B.
Câu 11: Cho cấp số nhân (un) với . Số 222 là số hạng thứ mấy của (un) ?
Hướng dẫn giải:
Số hạng tổng quát của dãy số đã cho là:
Xét phương trình:
=> Không có giá trị nào của n thỏa mãn.
Vậy 222 không là số hạng của cấp số đã cho.
Chọn D.
Câu 12: Cho cấp số nhân (un) thỏa mãn: . Số hạng đầu tiên có dạng trong đó a và b nguyên tố. Tính a+ b?
Hướng dẫn giải:
Theo giả thiết ta có:
Từ (1) và (2) vế chia vế (chú ý u1 ≠ 0 ) ta được:
Thay vào (1) suy ra:
Chọn C.
5. Bài tập tự luyện
Bài 1: Cho cấp số nhân (un) có các số hạng khác không, tìm u1 biết:
Lời giải:
Bài 2: Tìm tổng 5 số hạng đầu tiên của cấp số nhân, biết
Lời giải:
Bài 3: Một cấp số nhân dương có 4 số hạng, công bội q bằng 1/4 lần số hạng thứ nhất, tổng của hai số hạng đầu bằng 24. Tìm tích các số hạng cấp số nhân đó?
Lời giải:
Gọi 4 số lập thành cấp số cộng là u1,u2,u3,u4
u1=8,u2=16,u3=32,u4=64. Khi đó tích cần tìm là: 8.6.32.64 = 98304.
Bài 4: Cho bốn số nguyên biết rằng ba số hạng đầu lập thành một cấp số nhân, ba số hạng sau lập thành một cấp số cộng. Tổng của hai số hạng đầu và cuối bằng 14, còn tổng hai số ở giữa bằng 12. Tổng của bốn số nguyên đó là?
Lời giải:
Gọi 4 số cần tìm là a,b,c,d. Dựa vào giả thiết ta có hệ:
Vậy tổng 4 số nguyên đó là: 2 + 4 + 8 +12 = 26.
Bài 5: Cho cấp số nhân có 7 số hạng, số hạng thứ tư bằng 6 và số hạng thứ 7 gấp 243 lần số hạng thứ hai. Hãy tìm số hạng còn lại của CSN đó.
Lời giải:
Từ giả thiết ta có
Vậy u1=2/9,u2=2/3,u3=2,u4=6,u5=18,u6=54,u7=162.
Xem các Phương pháp giải bài tập hay, chi tiết khác:
Công thức tính tổng n số hạng đầu của cấp số nhân
Giới hạn của dãy số và cách giải bài tập
Giới hạn của hàm số và cách giải bài tập
Hàm số liên tục và cách giải bài tập
Cách tính đạo hàm bằng định nghĩa hay, chi tiết
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.