Với Giải Bài tập trang 71 sách bài tập Toán 8 Tập 1 trong Bài 5: Hình chữ nhật – Hình vuông Sách bài tập Toán lớp 8 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán lớp 8.
Bài tập trang 71 sách bài tập Toán 8 Tập 1
Trên tia đối của tia MA lấy điểm D sao cho MD = MA.
a) Chứng minh tứ giác ABDC là hình chữ nhật.
b) Gọi E là điểm đối xứng của A qua B. Chứng minh tứ giác BEDC là hình bình hành.
c) EM cắt BD tại K. Chứng minh EK = 2KM.
Lời giải:
a) Xét tứ giác ABDC có: AM = MD (M ∈ AD); BM = MC (M ∈ BC).
Suy ra tứ giác ABDC là hình bình hành.
Ta lại có (do ∆ABC vuông tại A).
Do đó, tứ giác ABDC là hình chữ nhật.
b) Tứ giác ABDC là hình chữ nhật (theo câu a), suy ra AB = CD và AB // CD.
Do E đối xứng với A qua B nên B, A, E thẳng hàng và AB = BE.
Vì AB // CD nên BE // CD.
Vì AB = CD và AB = BE nên CD = BE.
Xét tứ giác BEDC có BE // CD và BE = CD nên là hình bình hành.
c) ∆AED có hai đường trung tuyến EM và DB cắt nhau tại K, nên K là trọng tâm của tam giác AED.
Suy ra và nên EK = 2KM.
a) Tứ giác DKMN là hình gì Vì sao?
b) Gọi O là trung điểm của DM. Chứng minh ba điểm H, O , F thẳng hàng.
c) Tam giác DEF cần thêm điều kiện gì để tứ giác DKMN là hình vuông?
Lời giải:
a) Do MN ⊥ DE tại N, MK ⊥ DF tại K nên và
Tứ giác DKMN có nên DKMN là hình chữ nhật.
b) ∆DEF vuông tại D và DM là đường trung tuyến ứng với cạnh huyền nên
.
Suy ra ∆MDE cân tại M.
Ta lại có MN ⊥ DE tại N, suy ra đường cao MN cũng đồng thời là đường trung tuyến của ∆MDE, suy ra .
Tứ giác DHEM có: ND = NE và NH = NM (do H là điểm đối xứng với M qua N).
Suy ra DHEM là hình bình hành.
Do đó DH // ME và DH = ME.
Mà M là trung điểm EF nên ME = MF
Khi đó DH // MF và DH = MF nên tứ giác DHMF là hình bình hành.
Hơn nữa, O là trung điểm của DM, suy ra O cũng là trung điểm của HF.
Vậy H, O, F thẳng hàng.
c) Hình chữ nhật DKMN là hình vuông khi DM là đường phân giác của , hay DM là đường phân giác của .
Khi đó DM là đường trung tuyến và cũng là đường phân giác xuất phát từ D của ∆DEF
Do đó ∆DEF cân tại D
Suy ra ∆DEF vuông cân tại D.
Vậy ∆DEF vuông cân tại D thì DKMN là hình vuông.
a) Tính EM.
b) Vẽ tia Bx song song với AC sao cho Bx cắt EM tại D. Chứng minh tứ giác ABDE là hình vuông.
c) Gọi I là giao điểm của BE và AD, K là giao điểm của BE và AM. Chứng minh tứ giác BDCE là hình bình hành và DC= 6KI.
Lời giải:
a) ∆ABC có E là trung điểm của AB, M là trung điểm của BC (giả thiết).
Theo bài 4, trang 63, SBT Toán 8 Tập Một, ta có và ME // AB
Do đó (cm).
b) Tứ giác ABDE có: AB // DE (do AB // ME) và BD // AE (do Bx // AC ).
Suy ra ABDE là hình bình hành.
Hình bình hành ABDE có (do ∆ABC vuông tại A) nên ABDE là hình chữ nhật.
Ta lại có (do E là trung điểm của AC), suy ra (cm).
Khi đó AB = AE = 4 (cm).
Hình chữ nhật ABDE có AB = AE nên ABDE là hình vuông.
c) Hình vuông ABDE có AD cắt BE tại I, suy ra I là trung điểm của AD và BE.
Xét ∆ADC có I là trung điểm AD, E là trung điểm AC
Theo bài 4, trang 63, SBT Toán 8 Tập Một, ta có: IE // CD và .
Tứ giác BDCE có: BE // CD (vì IE // CD); BD // EC (vì Bx // AC).
Suy ra BDCE là hình bình hành.
Do đó, hai đường chéo BC và DE cắt nhau tại trung điểm của mỗi đường.
Mà M là trung điểm của BC, suy ra M cũng là trung điểm của DE.
∆ADE có đường trung tuyến AM và EI cắt nhau tại K nên K là trọng tâm của ∆ADE.
Suy ra .
Vậy DC = 6KI.
Xem thêm các bài giải sách bài tậpToán lớp 8 Chân trời sáng tạo hay, chi tiết khác:
Xem thêm các bài giải sách bài tậpToán lớp 8 Chân trời sáng tạo hay, chi tiết khác:
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.