Với Giải Bài 4.24 trang 63 SBT Toán 11 Tập 1 trong Bài 12: Đường thẳng và mặt phẳng song song Sách bài tập Toán lớp 11 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán lớp 11.
Cho tứ diện ABCD. Gọi G và H lần lượt là trọng tâm của hai tam giác ABC và ACD. Chứng minh rằng GH//(BCD
Bài 4.24 trang 63 SBT Toán 11 Tập 1: Cho tứ diện ABCD. Gọi G và H lần lượt là trọng tâm của hai tam giác ABC và ACD. Chứng minh rằng GH//(BCD)
Lời giải:
Gọi E, F lần lượt là trung điểm của các cạnh BC, CD. Vì G là trọng tâm của tam giác ABC nên A, G, E thẳng hàng và
Tương tự ta có A, H, F thẳng hàng và
Do đó,
Trong tam giác AEF có: , theo định lí Thalès đảo ta có GH//EF, mà nên GH//(BCD)
Xem thêm các bài SBT Toán 11 Kết nối tri thức hay, chi tiết khác:
Bài 4.22 trang 63 SBT Toán 11 Tập 1: Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng. Chứng minh rằng: a) CD//(ABEF)
Bài 4.23 trang 63 SBT Toán 11 Tập 1: Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng. Gọi K và L lần lượt là giao điểm của hai đường chéo của hai hình bình hành đó. Chứng minh rằng: a) KL//(ADF)
Xem thêm các bài SBT Toán 11 Kết nối tri thức hay, chi tiết khác:
Bài 11: Hai đường thẳng song song
Bài 13: Hai mặt phẳng song song
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.