Cho hình hộp ABCD.A’B’C’D’. Gọi O là giao điểm của các đường chéo của hình hộp

264

Với Giải Bài 4.38 trang 68 SBT Toán 11 Tập 1 trong Bài 13: Hai mặt phẳng song song Sách bài tập Toán lớp 11 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán lớp 11.

Cho hình hộp ABCD.A’B’C’D’. Gọi O là giao điểm của các đường chéo của hình hộp

Bài 4.38 trang 68 SBT Toán 11 Tập 1Cho hình hộp ABCD.A’B’C’D’. Gọi O là giao điểm của các đường chéo của hình hộp. Mặt phẳng qua O và song song với mặt phẳng (ABCD) cắt các cạnh AA’, BB’, CC’, DD’ lần lượt tại M, N, P, Q.

a) Chứng minh rằng M, N, P, Q lần lượt là trung điểm của các cạnh AA’, BB’, CC’, DD’.

b) Chứng minh rằng ABCD.MNPQ là hình hộp.

Lời giải:

SBT Toán 11 (Kết nối tri thức) Bài 13: Hai mặt phẳng song song (ảnh 10)

a) Áp dụng định lí Thalès cho ba mặt phẳng (ABCD), (MNPQ), (A’B’C’D’) và hai cát tuyến AA’, DB’ ta có: AMMA=DOOB

Vì O là trung điểm của DB’ nên M là trung điểm của AA’.

Chứng minh tương tự ta có: N, P, Q lần lượt là trung điểm của BB’, CC’, DD’.

b) Vì M, N lần lượt là trung điểm của AA’, BB’ nên MN//AB, MN=AB

Tương tự ta có: PQ//CD và PQ=CD

Vì AB=CD và AB//CD nên MN=PQ và MN//PQ.

Do đó tứ giác MNPQ là hình bình hành.

Vì các đường thẳng AM, BN, CP, DQ đôi một song song nên suy ra ABCD.MNPQ là hình hộp.

Đánh giá

0

0 đánh giá