Với Giải trang 68 SBT Toán lớp 11 trong Bài 13: Hai mặt phẳng song song Sách bài tập Toán lớp 11 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán lớp 11.
SBT Toán 11 trang 68 Tập 1 (Kết nối tri thức)
Lời giải:
Vì AD//BC (do ABCD là hình bình hành) nên AD//mp (BCE), AF//BE (do ABEF là hình bình hành) nên AF//mp (BCE).
Mà AD và AF là hai đường thẳng cắt nhau cùng nằm trong mặt phẳng ADF. Do đó, mp (ADF) //mp (BCE).
Các đường thẳng AB, CD, EF đôi một song song với nhau.
Lời giải:
Vì hai mặt phẳng (ABCD) và (A’B’C’D’) của hình hộp song song với nhau nên giao tuyến của mặt phẳng (EFGH) và hai mặt phẳng đó song song với nhau, tức là EF//GH
Vì hai mặt phẳng (AA’D’D) và (B’B’C’B) của hình hộp song song với nhau nên giao tuyến của mặt phẳng (EFGH) và hai mặt phẳng đó song song với nhau, tức là EH//GF
Tứ giác EFGH có: EF//GH, EH//GF nên tứ giác EFGH là hình bình hành.
Bài 4.35 trang 68 SBT Toán 11 Tập 1: Cho hình hộp ABCD.A’B’C’D’.
a) Xác định giao tuyến d của hai mặt phẳng (ADC’B’) và (A’D’CB).
b) Chứng minh rằng d // AD.
c) Chứng minh rằng d đi qua trung điểm của các đường chéo của hình hộp.
Lời giải:
a) Gọi E là giao điểm của AB’ và A’B; gọi F là giao điểm của CD’ và C’D. Vì đường thẳng EF vừa thuộc cả hai mặt phẳng (ADC’B’) và (A’D’CB) nên EF là giao tuyến của hai mặt phẳng (ADC’B’) và (A’D’CB).
b) Hai mặt phẳng (ADC’B’) và (A’D’CB) chứa hai đường thẳng song song là AD và BC nên giao tuyến EF của hai mặt phẳng đó song song với AD.
c) Tứ giác ABCD và BCC’B’ là hình bình hành nên AD//BC, và BC//B’C’ và , do đó ADC’B’ là hình bình hành.
Vì E, F lần lượt là trung điểm của AB’ và CD’ nên EF đi qua trung điểm của AC’. Vì các đường chéo của hình hộp cùng đi qua trung điểm của mỗi đường nên đường thẳng EF đi qua trung điểm các đường chéo đó.
Bài 4.36 trang 68 SBT Toán 11 Tập 1: Cho hình hộp ABCD.A’B’C’D’. Chứng minh rằng:
b) Hai mặt phẳng (AB’D’) và (C’B’D) song song với nhau.
Lời giải:
a) Tứ giác ABCD và BCC’B’ là hình bình hành nên AD//BC, và BC//B’C’ và , do đó ADC’B’ là hình bình hành nên AB’//C’D.
b) Vì AB’//C’D nên AB’//mp(C’BD)
Chứng minh tương tự ta có: AD’//BC’ nên AD’//mp(C’BD). Mặt phẳng (AB’D’) có hai đường thẳng cắt nhau AB’ và AD’ cùng song song với mp(C’BD) nên hai mặt phẳng (AB’D’) và (C’B’D) song song với nhau.
Lời giải:
Vì ba mặt phẳng (P), (Q), (R) đôi một song song và hai đường thẳng d, d’ cắt ba mặt phẳng lần lượt tại A, B, C và A’, B’, C’ nên (định lí Thalès)
a) Chứng minh rằng M, N, P, Q lần lượt là trung điểm của các cạnh AA’, BB’, CC’, DD’.
b) Chứng minh rằng ABCD.MNPQ là hình hộp.
Lời giải:
a) Áp dụng định lí Thalès cho ba mặt phẳng (ABCD), (MNPQ), (A’B’C’D’) và hai cát tuyến AA’, DB’ ta có:
Vì O là trung điểm của DB’ nên M là trung điểm của AA’.
Chứng minh tương tự ta có: N, P, Q lần lượt là trung điểm của BB’, CC’, DD’.
b) Vì M, N lần lượt là trung điểm của AA’, BB’ nên MN//AB,
Tương tự ta có: PQ//CD và
Vì và AB//CD nên và MN//PQ.
Do đó tứ giác MNPQ là hình bình hành.
Vì các đường thẳng AM, BN, CP, DQ đôi một song song nên suy ra ABCD.MNPQ là hình hộp.
Khi Thúy cắt bánh thì lưỡi dao di chuyển tạo thành một mặt phẳng cắt hai mặt trên và dưới của chiếc bánh. Vì mặt trên và mặt dưới của chiếc bánh song song với nhau nên các vết cắt (chính là giao tuyến của mặt phẳng cắt và hai mặt bánh) song song với nhau.
Hoàng nói sai, theo định lí Thalès trong không gian thì độ dài của phần ống bị ướt bằng độ dài của toàn bộ ống hút
Xem thêm các bài SBT Toán 11 Kết nối tri thức hay, chi tiết khác:
Bài 4.35 trang 68 SBT Toán 11 Tập 1: Cho hình hộp ABCD.A’B’C’D’. a) Xác định giao tuyến d của hai mặt phẳng (ADC’B’) và (A’D’CB).
Bài 4.36 trang 68 SBT Toán 11 Tập 1: Cho hình hộp ABCD.A’B’C’D’. Chứng minh rằng: a) AB’//C’D’
Xem thêm các bài SBT Toán 11 Kết nối tri thức hay, chi tiết khác:
Bài 12: Đường thẳng và mặt phẳng song song
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.