Lý thuyết Hai đường thẳng song song (Cánh Diều) Toán 7

Toptailieu.vn biên soạn và giới thiệu Lý thuyết Hai đường thẳng song song (Cánh Diều) Toán 7 hay, ngắn gọn và bài tập tự luyện có lời giải chi tiết sẽ giúp học sinh nắm vững nội dung kiến thức từ đó dễ dàng làm các bài tập Toán 7.

Lý thuyết Hai đường thẳng song song (Cánh Diều) Toán 7

A. Lý thuyết

1. Hai góc đồng vị. Hai góc so le trong

Đường thẳng c cắt hai đường thẳng a, b lần lượt tại điểm A, B.

Khi đó, ta thấy:

+ Góc A1 và góc B1 ở “cùng một phía” của đường thẳng c.

+ Góc A1 ở “phía trên” đường thẳng a. Góc B1 cũng ở “phía trên” đường thẳng b.

Hai góc A1 và B1 ở vị trí như thế được gọi là hai góc đồng vị.

+ Góc Avà góc B1 ở “hai phía” của đường thẳng c.

+ Góc A3 ở “phía dưới” của đường thẳng a. Góc B1 lại ở “phía trên” của đường thẳng b.

Hai góc A3 và B1 ở vị trí như thế gọi là hai góc so le trong.

Ví dụ: Kể tên các cặp góc so le trong và đồng vị trong hình sau:

Hướng dẫn giải

Các cặp góc so le trong là: M3 và N1; Mvà N2.

Các cặp góc đồng vị là: M1 và N1; M2 và N2; M3 và N3; M4 và N4.

2. Dấu hiệu nhận biết hai đường thẳng song song

- Nếu đường thẳng c cắt hai đường thẳng a và b và trong các góc tạo thành có một cặp góc đồng vị bằng nhau thì a và b song song với nhau.

- Nếu đường thẳng c cắt hai đường thẳng a và b và trong các góc tạo thành có một cặp góc so le trong bằng nhau thì a và b song song với nhau.

Ví dụ:

- Ở hình 1: Đường thẳng c cắt hai đường thẳng a, b và trong các góc tạo thành có một cặp góc đồng vị bằng nhau  A1^=B1^ nên a // b.

- Ở hình 2:  Đường thẳng d cắt hai đường thẳng m, n và trong các góc tạo thành có một cặp góc so le trong bằng nhau  C4^=D2^ nên m // n.

Ví dụ: Vẽ một đường thẳng b đi qua điểm M và song song với đường thẳng a (M  a) bằng êke.

Bước 1: Vẽ đường thẳng a và điểm M không thuộc a.

Bước 2: Đặt ê ke sao cho cạnh ngắn của góc vuông nằm trên đường thẳng a và cạnh huyền đi qua điểm M, vẽ theo cạnh huyền một phần đường thẳng c đi qua M (đường thẳng c cắt đường thẳng a tại điểm N).

Bước 3: Dịch chuyển ê ke sao cho cạnh huyền của ê ke vẫn nằm trên đường thẳng c còn cạnh ngắn của góc vuông đi qua điểm M, vẽ theo cạnh ngắn của góc vuông một phần đường thẳng b đi qua điểm M.

Bước 4: Vẽ hoàn thiện đường thẳng b.

Nhận xét: Qua một điểm ở ngoài một đường thẳng luôn có một đường thẳng song song với đường thẳng đó.

3. Tiên đề Euclid về đường thẳng song song

Qua một điểm ở ngoài một đường thẳng chỉ có một đường thẳng song song với đường thẳng đó.

Nhận xét: Nếu hai đường thẳng cùng đi qua điểm M và cùng song song song với đường thẳng a (M  a) thì hai đường thẳng đó trùng nhau.

Ví dụ:

Qua điểm M nằm ngoài đường thẳng a ta vẽ được một đường thẳng b song song với a.

Và vẽ được đường thẳng b’ cũng đi qua M và b’ song song với a.

Khi đó theo Tiên đề Euclid thì b và b’ trùng nhau.

4. Tính chất của hai đường thẳng song song

Nếu một đường thẳng cắt hai đường thẳng song song thì:

- Hai góc đồng vị bằng nhau.

- Hai góc so le trong bằng nhau.

Ví dụ: Tính số đo các góc A1 và góc D­ trong hai hình vẽ sau, biết a // b và m // n.

Hướng dẫn giải

- Hình 1: Do a // b nên ta có: A1^=B1^ (hai góc đồng vị),  mà B1^=60° nên A1^=B1^=60°.

Vậy  A1^=60°.

- Hình 2: Do m // n nên: C4^=D2^ (hai góc so le trong), mà C4^=70° nên C4^=D2^=70°.

Vậy D2^=70°.

Chú ý: Nếu đường thẳng c cắt hai đường thẳng song song a và b thì:

+ Hai góc so le ngoài bằng nhau.

+ Hai góc trong cùng phía có tổng số đo bằng 180°.

Ví dụ:

- Các cặp góc so le ngoài A1 và B3; A2 và B4; Khi đó: A1^=B3^ và A2^=B4^.

- Hai góc trong cùng phía: góc A3 và góc B2; góc A4 và góc B1.

Khi đó:  A3^+B2^=180°A4^+B1^=180°.

B. Bài tập tự luyện

B.1 Bài tập tự luận

Bài 1. Cho hình vẽ sau:

a) Vì sao a // b?

b) Tính số đo các góc C1, C2 trong hình vẽ.

Hướng dẫn giải

a) Ta có góc A1 và góc B2 là hai góc ở vị trí đồng vị, mà  A^=B^=90°.

Vậy nên a // b (dấu hiệu nhận biết hai đường thẳng song song).

b) Ta có góc C1 và D4 là hai góc trong cùng phía.

Mà a // b nên C1^+D4^=180° 

Suy ra C1^=180°D4^=180°80°=100°.

Góc C2 và góc D4 ở vị trí so le trong nên C2^=D4^=80°.

Vậy C1^=100°C2^=80°.

Bài 2. Cho hình vẽ

Biết  K1^=H3^=42°. Tính H3^+K4^.

Hướng dẫn giải

Xét hai đường thẳng a và b cùng cắt đường thẳng c có: K1^=H3^.

Mà hai góc này ở vị trí so le trong nên a // b

Suy ra H3^+K4^=180° (hai góc ở vị trí trong cùng phía)

Vậy H3^+K4^=180°.

B.2 Bài tập trắc nghiệm

Câu 1. Cho hình vẽ dưới đây:

hai-duong-thang-song-song-ly-thuyet-bai-tap-toan-lop-7-canh-dieu.pdf (ảnh 1)

                                              

D. Vô số cặp.

Hướng dẫn giải

Đáp án đúng là: D

Qua một điểm M cho trước ta có thể vẽ được vô số đường thẳng (ví dụ đường thẳng a, đường thẳng n, đường thẳng i như trên hình vẽ).

Cứ tương ứng với mỗi một đường thẳng đi qua M thì ta vẽ được một đường thẳng đi qua N và song song với đường thẳng đó (theo Tiên đề Euclid). Chẳng hạn, trên hình vẽ ta có b // a, m // n, j // i.

Vậy ta vẽ được vô số cặp đường thẳng thoả mãn yêu cầu đề bài.

Câu 3. Cho hình vẽ

Biết a // b, E^1=51°. Số đo F3^ là:

A. 51°;                                                                          

B. 129°;                                                                        

C. 138°;                                                                        

D. 48°.

Hướng dẫn giải

Đáp án đúng là: A

Ta có: E1^ và F1^ là hai góc đồng vị và a // b nên E1^=F1^=51°.

Mà ta lại có F1^ và F3^ là hai góc đối đỉnh nên F1^=F3^.

Vậy F3^=51°.

Xem thêm Lý thuyết các bài Toán 7 Cánh Diều hay, chi tiết khác:

Lý thuyết Bài 2. Tia phân giác của một góc

Lý thuyết Bài 4. Định lý

Lý thuyết Bài tập ôn tập chương 4

Lý thuyết Bài 1. Thu nhập, phân loại và biểu diễn dữ liệu

Lý thuyết Bài 2. Phân tích và xử lí dữ liệu

Tài liệu có 9 trang. Để xem toàn bộ tài liệu, vui lòng tải xuống
Đánh giá

0

0 đánh giá

Tài liệu cùng môn học

Lý thuyết Ôn tập chương 7 (Cánh Diều) Toán 7 Giang Tiêu đề (copy ở trên xuống) - Trọn bộ lý thuyết Toán 7 Cánh Diều hay, chi tiết giúp em học tốt Toán 7.
718 47 14
Lý thuyết Tính chất ba đường cao của tam giác (Cánh Diều) Toán 7 Giang Lý thuyết Tính chất ba đường cao của tam giác (Cánh Diều) Toán 7 - Trọn bộ lý thuyết Toán 7 Cánh Diều hay, chi tiết giúp em học tốt Toán 7.
606 12 6
Lý thuyết Tính chất ba đường trung trực của tam giác (Cánh Diều) Toán 7 Giang Lý thuyết Tính chất ba đường trung trực của tam giác (Cánh Diều) Toán 7 - Trọn bộ lý thuyết Toán 7 Cánh Diều hay, chi tiết giúp em học tốt Toán 7.
693 12 9
Lý thuyết Tính chất ba đường phân giác của tam giác (Cánh Diều) Toán 7 Giang Lý thuyết Tính chất ba đường phân giác của tam giác (Cánh Diều) Toán 7 - Trọn bộ lý thuyết Toán 7 Cánh Diều hay, chi tiết giúp em học tốt Toán 7.
673 13 8
Tải xuống