Lập phương trình đường tròn trong các trường hợp sau

492

Với giải Bài 2 trang 62 Toán 10 Tập 2 Chân trời sáng tạo chi tiết trong Bài 3. Đường tròn trong mặt phẳng tọa độ giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem:

Lập phương trình đường tròn trong các trường hợp sau

Bài 2 trang 62 Toán 10 Tập 2: Lập phương trình đường tròn trong các trường hợp sau:

a) (C) có tâm I(1;5) và bán kính r=4

b) (C) có đường kính MN với M(3;1)và N(9;3)

c) (C) có tâm I(2;1) và tiếp xúc với đường thẳng 5x12y+12=0

d) (C) có tâm A(1;2) và đi qua điểm B(4;5)

Phương pháp giải

a) Phương trình đường tròn có dạng (xa)2+(yb)2=R2 với tâm I(a;b) và bán kính R

b) Bước 1: Từ đường kính xác định bán kính của đường tròn

    Bước 2: Xác định tâm của đường tròn (là trung điểm của đường kính)

c, d) Bước 1: Xác định bán kính của đường tròn (là khoảng cách từ tâm đến tiếp tuyến)

   Bước 2: Viết phương trình đường tròn (xa)2+(yb)2=R2 với tâm I(a;b) và bán kính R

Lời giải 

a) Đường tròn (C) tâm I(1;5), bán kính r=4 có phương trình là: (x1)2+(y5)2=16

b) MN=(93)2+(3(1))2=213, suy ra bán kính là 13

Tâm của đường tròn là trung điểm của MN: I(6;1)

Đường tròn (C) tâm I(6;1)và bán kính là 13 có phương trình: (x6)2+(y1)2=13

c) Ta có bán kính của đường tròn r=d(I,d)=|5.212.1+11|52+122=913

Đường tròn (C) tâm I(2;1)và bán kính là 913 có phương trình: (x2)2+(y1)2=81169

d) Bán kính của đường tròn là r=AB=(41)2+((5)(2))2=32

Đường tròn (C) tâm A(1;2)và bán kính là 32 có phương trình: (x1)2+(y+2)2=18

Xem thêm các bài giải Toán 10 Chân trời sáng tạo hay, chi tiết khác:

HĐ Khám phá 1 trang 59 Toán 10 Tập 2: Hãy nhắc lại công thức tính khoảng cách giữa 2 điểm I(a;b) và M(x;y)trong mặt phẳng Oxy...

Thực hành 1 trang 60 Toán 10 Tập 2: Viết phương trình đường tròn (C) trong các trường hợp sau...

Thực hành 2 trang 61 Toán 10 Tập 2: Phương trình nào trong các phương trình sau đây là phương trình đường tròn? Tìm tọa độ tâm và bán kính của đường tròn đó...

Vận dụng 1 trang 61 Toán 10 Tập 2: Theo dữ kiện đã cho trong hoạt động khởi động của bài học, viết phương trình đường tròn biểu diễn tập hợp các điểm xa nhất mà vòi nước có thể phun tới...

Vận dụng 2 trang 61 Toán 10 Tập 2: Một sân khấu đã được thiết lập một hệ trục tọa độ bởi đạo diễn có thể sắp đặt ánh sáng và xác định vị trí của các diễn viên. Cho biết một đèn chiếu đang gọi trên sân khấu một vùng sáng bên trong đường tròn (C) có phương trình (x13)2+(y4)2=16...

HĐ Khám phá 2 trang 61 Toán 10 Tập 2: Cho điểm M0(x0;y0) nằm trên đường tròn (C) tâm I(a;b)và cho điểmM(x;y) tùy ý trong mặt phẳng Oxy. Gọi Δ là tiếp tuyến với (C) tại M0...

Thực hành 3 trang 62 Toán 10 Tập 2: Viết phương trình tiếp tuyến của đường tròn (C):x2+y22x4y20=0 tại điểm A(4;6)...

Vận dụng 3 trang 62 Toán 10 Tập 2: Một vận động viên ném đĩa đã vung đĩa theo một đường tròn (C) có phương trình:

Bài 1 trang 62 Toán 10 Tập 2: Phương trình nào trong các phương trình sau đây là phương trình đường tròn? Tìm tọa độ tâm và bán kính của đường tròn đó...

Đánh giá

0

0 đánh giá