Bài 8.9 trang 75 Toán 11 Tập 2 | Kết nối tri thức Giải Toán lớp 11

239

Với giải Bài 8.9 trang 75 SGK Toán 11 Kết nối tri thức chi tiết trong Toán 11 (Kết nối tri thức) Bài 29: Công thức cộng xác suất giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Bài 8.9 trang 75 Toán 11 Tập 2 | Kết nối tri thức Giải Toán lớp 11

Bài 8.9 trang 75 Toán 11 Tập 2: Một nhà xuất bản phát hành hai cuốn sách A và B. Thống kê cho thấy 50% người mua sách A; 70% người mua sách B; 30% người mua cả sách A và sách B. Chọn ngẫu nhiên một người mua. Tính xác suất để:

a) Người mua đó mua ít nhất một trong hai sách A hoặc B;

b) Người mua đó không mua cả sách A và sách B.

Lời giải:

a)

Gọi E là biến cố “Người đó mua cuốn sách A”; F là biến cố “Người đó mua cuốn sách B” ; G là biến cố “Người đó mua cả hai cuốn sách A và B”; H là biến cố “Người đó mua ít nhất một trong hai sách A và B”.

Như vậy ta có:

G = E ∩ F ; H = E∪ F.

Áp dụng công thức cộng xác suất ta có:

P(H) = P(E∪ F) = P(E) + P(F) – P(EF) = P(E) + P(F) – P(G)

Lại có:

P(E) = 50% = 0,5

P(F) = 70% = 0,7

P(G) = 30% = 0,3

Do đó, ta có: P(H) = P(E) + P(F) – P(G) = 0,5 + 0,7 – 0,3 = 0,9.

Vậy xác suất để người đó mua ít nhất một trong hai sách A và B là 0,9.

b)

Gọi H¯ là biến cố đối của H, tức là H¯ là biến cố “Người đó không mua cả sách A và sách B”.

Áp dụng công thức xác suất cho biến cố đối ta có:

P(H¯) = 1 – P(H) = 1 – 0,9 = 0,1.

Vậy xác suất để người đó không mua cả sách A và sách B là 0,1.

Đánh giá

0

0 đánh giá