Toptailieu.vn giới thiệu Giải bài tập Toán lớp 6 Luyện tập chung trang 58 sách Kết nối tri thức giúp học sinh xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán lớp 6 Tập 1. Mời các bạn đón xem:
Toán 6 (Kết nối tri thức): Luyện tập chung trang 58
Bài tập trang 59
Toán lớp 6 trang 59 Bài 2.45: Cho bảng sau:
a) Tìm các số thích hợp thay vào ô trống trong bảng;
b) So sánh tích ƯCLN(a,b) . BCNN(a,b) và a.b.
Phương pháp giải:
Tìm ƯCLN và BCNN của 2 số bằng cách phân tích 2 số ra thành tích các thừa số nguyên tố. Sau đó
* Tìm ƯCLN:
Ta chọn ra các thừa số nguyên tố chung, lập tích các thừa số vừa chọn, mỗi thừa số lấy với số mũ nhỏ nhất
* Tìm BCNN:
Ta chọn ra các thừa số chung và riêng, lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất
Lời giải:
Ta có bảng sau:
a |
9 |
34 |
120 |
15 |
2 987 |
b |
12 |
51 |
70 |
28 |
1 |
ƯCLN(a, b) |
3 |
17 |
10 |
1 |
1 |
BCNN(a, b) |
36 |
102 |
840 |
420 |
2 987 |
ƯCLN(a, b) .BCNN(a, b) |
108 |
1 734 |
8 400 |
420 |
2 987 |
a.b |
108 |
1 734 |
8 400 |
420 |
2 987 |
Giải thích:
a) +) Ở cột thứ hai:
a = 34 = 2.17; b = 51 = 3.17
⇒ ƯCLN(a; b) = 17 ; BCNN(a; b) = 2.3.17 = 102.
ƯCLN(a, b) . BCNN(a, b) = 17.102 = 1 734.
a.b = 34. 51 = 1 734.
+) Ở cột thứ ba:
a = 120 = ; b = 70 = 2.5.7
⇒ ƯCLN(a, b) = 2. 5 = 10 ; BCNN(a, b) == 840
ƯCLN(a, b) . BCNN(a, b) = 10. 840 = 8 400.
a.b = 120. 70 = 8 400.
+) Ở cột thứ tư:
a = 15 =3.5; b = 28 =
⇒ ƯCLN(a, b) = 1 ; BCNN(a, b) = =420
ƯCLN(a, b) . BCNN(a, b) =1. 420 = 420.
a.b = 15. 28 = 420.
+) Ở cột thứ năm:
a = 2 987; b = 1
⇒ ƯCLN(a; b) = 1 ; BCNN(a; b) = 2 987
ƯCLN(a, b) . BCNN(a, b) = 1 . 2 987 = 2 987.
a.b = 2 987 . 1 = 2 987
b) ƯCLN(a, b).BCNN(a, b) = a.b
Em rút ra kết luận: tích của BCNN và ƯCLN của hai số tự nhiên bất kì bằng tích của chúng.
Toán lớp 6 trang 59 Bài 2.46: Tìm ƯCLN và BCNN của:
Phương pháp giải:
Các số đã ở dạng tích các thừa số nguyên tố.
* Tìm ƯCLN:
Ta chọn ra các thừa số nguyên tố chung, lập tích các thừa số vừa chọn, mỗi thừa số lấy với số mũ nhỏ nhất
* Tìm BCNN:
Ta chọn ra các thừa số chung và riêng, lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất
Lời giải:
a) và
+) Thừa số nguyên tố chung là 5 và thừa số nguyên tố riêng là 3 và 7
+) Số mũ nhỏ nhất của 5 là 2 nên ƯCLN cần tìm là
+) Số mũ lớn nhất của 3 là 1, của 5 là 2, của 7 là 1 nên BCNN cần tìm là
Vậy ƯCLN cần tìm là 25; BCNN cần tìm là 525.
b) và
+) Thừa số nguyên tố chung là 3 và thừa số nguyên tố riêng là 2; 5; 7; 11
+) Số mũ nhỏ nhất của 3 là 1 nên ƯCLN cần tìm là 3
+) Số mũ lớn nhất của 2 là 2, của 3 là 2, của 5 là 1, của 7 là 1, của 11 là 1 nên BCNN cần tìm là
Vậy ƯCLN cần tìm là 3; BCNN cần tìm là 13 860.
Phương pháp giải:
Phân số tối giản là phân số có ước chung lớn nhất của tử số và mẫu số là 1
Lời giải:
a)
Vì ƯCLN(15, 17)=1 nên phân số đã tối giản
b)
Ta có: 70 = 2.5.7; 105= 3.5.7
+ Thừa số nguyên tố chung là 5 và 7
+ Số mũ nhỏ nhất của 5 là 1, số mũ nhỏ nhất của 7 là 1 nên nên phân số chưa tối giản.
ƯCLN(2, 3)=1 nên đã rút gọn về tối giản
Phương pháp giải:
*Các bước tìm BCNN:
- Phân tích mỗi số ra thừa số nguyên tố,
- Chọn ra các thừa số nguyên tố chung và riêng;
- Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất. Tích đó là BCNN cần tìm.
Lời giải:
Đổi 360 giây = 6 phút, 420 giây = 7 phút
Giả sử họ lại gặp nhau sau x (phút)( x > 0)
Vận động viên thứ nhất chạy một vòng sân hết 6 phút nên x là bội của 6.
Vận động viên thứ hai chạy một vòng sân hết 7 phút nên x là bội của 7.
Nên x ∈ BC(6, 7).
Mà x ít nhất nên x = BCNN(6, 7).
Ta có: 6 = 2.3; 7 = 7
x = BCNN(6, 7) = 2.3.7 = 42
Vậy sau 42 phút họ lại gặp nhau.
Toán lớp 6 trang 59 Bài 2.49: Quy đồng mẫu các phân số sau:
a)
b)
Phương pháp giải:
Mẫu số chung là BCNN của các mẫu số của các phân số
Lời giải:
a) và
Ta có: nên . Do đó ta có thể chọn mẫu chung là 45.
b) và
Ta có: ; ; nên BCNN(12, 15, 27) =. Do đó ta có thể chọn mẫu chung là 540.
Phương pháp giải:
Độ dài 3 tấm phải chia hết cho độ dài thanh. Do đó độ dài mỗi thanh phải là ước chung của độ dài 3 thanh
Lời giải:
Các thanh gỗ có độ dài lớn nhất được cắt ra là ƯCLN(56, 48, 40)
Ta có:
Ta thấy thừa số nguyên tố chung là 2 và có số mũ nhỏ nhất là 3
Do đó
Vậy chiều dài các thanh gỗ lớn nhất có thể cắt là 8 dm.
Phương pháp giải:
Học sinh lớp 6A khi xếp thành hàng 2, hàng 3, hàng 7 đều vừa đủ hàng nên số học sinh lớp 6A là BC(2, 3, 7)
Lời giải:
Học sinh lớp 6A khi xếp thành hàng 2, hàng 3, hàng 7 đều vừa đủ hàng nên số học sinh lớp 6A là BC(2, 3, 7)
BCNN(2, 3, 7) = 2.3.7 = 42 nên BC(2, 3, 7) = B(42) = {0; 42; 84, ...}
Mà số học sinh nhỏ hơn 45 nên số học sinh lớp 6A là 42.
Vậy số học sinh lớp 6A là 42 học sinh.
Phương pháp giải:
Sử dụng kết luận ở bài tập 2.45, ta có tích của BCNN và ƯCLN của hai số tự nhiên bất kì thì bằng tích của hai số đó.
Lời giải:
Gọi số cần tìm là
Tích của hai số đã cho là
Tích của BCNN và ƯCLN của hai số đã cho là:
Áp dụng kết luận ở bài tập 2.45, ta có tích của BCNN và ƯCLN của hai số tự nhiên bất kì thì bằng tích của hai số đó.
Do đó: =
Vậy
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.