Bài 27 trang 108 Toán 11 Tập 2 | Kết nối tri thức Giải Toán lớp 11

141

Với giải Bài 27 trang 108 SGK Toán 11 Kết nối tri thức chi tiết trong Toán 11 (Kết nối tri thức) Bài tập ôn tập cuối năm giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Bài 27 trang 108 Toán 11 Tập 2 | Kết nối tri thức Giải Toán lớp 11

Bài 27 trang 108 Toán 11 Tập 2: Giải các phương trình và bất phương trình sau:

a) 31x= 4;

b) 2x23x= 4;

c) log(x + 1) + log(x – 3) = 3;

d) 15x22x1125 ;

e) 23x2+3x+2 ;

f) log (3x2 + 1) > log (4x).

Lời giải:

a) Điều kiện: x ≠ 0.

Ta có 31x=41x=log34x=1log34=log43 (thỏa mãn).

Vậy nghiệm của phương trình là x = log43.

b) 2x23x=42x23x=22x23x=2

x23x2=0x=3+172 hoặc x=3172 .

Vậy tập nghiệm của phương trình là S = Bài 27 trang 108 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11 .

c) Điều kiện Bài 27 trang 108 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11 .

Ta có log(x + 1) + log(x – 3) = 3

 log4 [(x + 1)(x – 3)] = 3

 (x + 1)(x – 3) = 43

 x2 – 2x – 67 = 0

 x = 1 - 217 (loại) hoặc x = 1 + 217 (thỏa mãn).

Vậy nghiệm của phương trình là x = 1 + 217 .

d) Ta có 15x22x112515x22x153

x22x3x22x301x3.

Vậy tập nghiệm của bất phương trình là S = [−1; 3].

e) 23x2+3x+2

Bài 27 trang 108 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 112+3x+2

12+3x2+3x+2

2+3x2+3x+2.

Vậy tập nghiệm của bất phương trình là S = [−1; +).

f) Điều kiện: 4x > 0  x > 0.

Ta có log (3x2 + 1) > log (4x)  3x2 + 1 > 4x  3x2 – 4x + 1 > 0 Bài 27 trang 108 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11 .

Kết hợp với điều kiện, ta có Bài 27 trang 108 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11 .

Vậy tập nghiệm của bất phương trình là S=0;131;+ .

Đánh giá

0

0 đánh giá