Cho hình bình hành ABCD. Gọi H và K lần lượt là chân đường cao hạ từ

157

Với giải Bài 2 trang 65 SBT Toán 8 Chân trời sáng tạo chi tiết trong Bài 4: Hình bình hành – Hình thoi giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Cho hình bình hành ABCD. Gọi H và K lần lượt là chân đường cao hạ từ

Bài 2 trang 65 SBT Toán 8 Tập 1Cho hình bình hành ABCD. Gọi H và K lần lượt là chân đường cao hạ từ A và C đến BD.

a) Chứng minh rằng tứ giác AHCK là hình bình hành.

 

b) Gọi M là giao điểm của AK và BC, N là giao điểm của CH và AD. Chứng minh AN = CM.

c) Gọi O là trung điểm của HK. Chứng minh M, O, N thẳng hàng.

Lời giải:

Cho hình bình hành ABCD. Gọi H và K lần lượt là chân đường cao hạ từ A và C đến BD

a) Do ABCD là hình bình hành nên AB // CD

Suy raABD^=CDB^ (hai góc so le trong) hay ABH^=CDK^.

Xét ∆AHB vuông tại H và ∆CKD vuông tại K, ta có:

AB = CD (do ABCD là hình bình hành); ABH^=CDK^ (chứng minh trên).

Suy ra ∆AHB = ∆CKD (cạnh huyền – góc nhọn)

Do đó AH = CK (hai cạnh tương ứng)

Ta có: AH ⊥ BD, CK ⊥ BD suy ra AH // CK.

Tứ giác AHCK có: AH // CK, AH = CK nên là hình bình hành.

b) Vì AHCK là hình bình hành nên AK // CH, hay AM // CN. (1)

Hơn nữa, ABCD là hình bình hành và N ∈AD, M ∈ BC nên AN // CM. (2)

Từ (1) và (2) suy ra ANCM là hình bình hành.

Vậy AN = CM.

c) Tứ giác AHCK là hình bình hành có hai đường chéo AC, HK cắt nhau tại trung điểm

O của HK nên O cũng là trung điểm của AC.

Tứ giác ANCM là hình bình hành có hai đường chéo AC, NM cắt nhau tại trung điểm

O của AC nên O cũng là trung điểm của MN.

Vậy M, O, N thẳng hàng.

Đánh giá

0

0 đánh giá