Thực hành 2 trang 61 Toán 11 Tập 2 | Chân trời sáng tạo Giải Toán lớp 11

107

Với giải Thực hành 2 trang 61 SGK Toán 11 Chân trời sáng tạo chi tiết trong Toán 11 (Chân trời sáng tạo) Bài 2: Đường thẳng vuông góc với mặt phẳng giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Thực hành 2 trang 61 Toán 11 Tập 2 | Chân trời sáng tạo Giải Toán lớp 11

Thực hành 2 trang 61 Toán 11 Tập 2: Cho tứ diện OABC có OA vuông góc với mặt phẳng (OBC) và có A′, B′, C′ lần lượt là trung điểm của OA, OB, OC. Vẽ OH là đường cao của tam giác OBC. Chứng minh rằng:

a) OA ⊥ (A ′B′C′) ;

b) B′ C′ ⊥ (OAH ).

Thực hành 2 trang 61 Toán 11 Tập 2 Chân trời sáng tạo | Giải Toán 11

Lời giải:

a) Xét tam giác OAB:

A′ là trung điểm OA

B′ là trung điểm AB

Nên A ′B′ là đường trung bình của ΔOAB.

Do đó A ′B′ // OB ⇒ A ′B′ // (OBC) (vì OB(OBC)

Tương tự: B′C′ là đường trung bình của ΔABC

Do đó B ′C′ // BC ⇒ B ′C′ // (OBC) (vì BC(OBC)

Ta có:

A' // OBC                 B'C' //OBC                 A',B'C'A'B'C'A'B'C' //OBC

Mà OA ⊥ (OBC)

Vậy OA ⊥ (A ′B′C′).

b) Ta có OA ⊥ (OBC) nên OA ⊥ BC

M à OH ⊥ BC (OH là đường cao của ΔOBC) , suy ra BC ⊥ (OAH)

Lại có: B′C′ // BC nên B ′C′ ⊥ (OAH).

Đánh giá

0

0 đánh giá