Đại cương về đường thẳng và mặt phẳng (Lý thuyết + 35 bài tập có lời giải)

508

Toptailieu.vn xin giới thiệu sơ lược Lý thuyết Đại cương về đường thẳng và mặt phẳng (Lý thuyết + 35 bài tập có lời giải) Toán 11 chọn lọc, hay nhất giúp học sinh lớp 11ôn luyện để nắm chắc kiến thức cơ bản và đạt kết quả cao trong các bài thi môn Toán.

Mời các bạn đón xem:

Đại cương về đường thẳng và mặt phẳng (Lý thuyết + 35 bài tập có lời giải)

I. Đại cương về đường thẳng và mặt phẳng

1. Mở đầu về hình học không gian

Hình học không gian có các đối tượng cơ bản là điểm, đường thẳng và mặt phẳng.

Quan hệ thuộc: Trong không gian:

a. Với một điểm A và một đường thẳng d có thể xảy ra hai trường hợp:

    Điểm A thuộc đường thẳng d, kí hiệu A ∈ d.

    Điểm A không thuộc đường thẳng, kí hiệu A ∉ d.

b. Với một điểm A và một mặt phẳng (P) có thể xảy ra hai trường hợp:

    Điểm A thuộc mặt thẳng (P), kí hiệu A ∈ (P).

    Điểm A không thuộc đường thẳng, kí hiệu A ∉ (P).

2. Các tính chất thừa nhận của hình học không gian

Tính chất thừa nhận 1: Có một và chỉ một đường thẳng đi qua hai điểm phân biệt cho trước.

Tính chất thừa nhận 2: Có một và chỉ một mặt phẳng đi qua ba điểm không thẳng hàng cho trước.

Tính chất thừa nhận 3: Tồn tại bốn điểm không cùng nằm trên một mặt phẳng.

Tính chất thừa nhận 4: Nếu hai mặt phẳng phân biệt có một điểm chung thì chúng có một đường thẳng chung duy nhất chứa tất cả các điểm chung của hai mặt phẳng đó.

Tính chất thừa nhận 5: Trong mỗi mặt phẳng, các kết đã biết của hình học phẳng đều đúng.

Định lí: Nếu một đường thẳng đi qua hai điểm phân biệt của một mặt phẳng thì mọi điểm của đường thẳng đều thuộc mặt phẳng đó.

3. Điều kiện xác định mặt phẳng

Có bốn cách xác định trong một mặt phẳng:

Cách 1: Một mặt phẳng được xác định nếu biết nó đi qua ba điểm A, B, C không thẳng hàng của mặt phẳng, kí hiệu (ABC).

Cách 2: Một mặt phẳng được xác định nếu biết nó đi qua một đường thẳng d và một điểm A không thuộc d, kí hiệu (A, d).

Cách 3: Một mặt phẳng được xác định nếu biết nó đi qua hai đường thẳng a, b cắt nhau, kí hiệu (a, b).

Cách 4: Một mặt phẳng được xác định nếu biết nó đi qua hai đường thẳng a, b song song, kí hiệu (a, b).

4. Hình chóp và tứ diện

Định nghĩa: Cho đa giác A1A2…An và cho điểm S nằm ngoài mặt phẳng chứa đa giác đó. Nối S với các đỉnh A1, A2,…, An ta được n miền đa giác SA1A2, SA2A3,…, SAn-1An.

Hình gồm n tam giác đó và đa giác A1A2A3...An được gọi là hình chóp S.A1A2A3…An.

 (ảnh 1)

Trong đó:

    Điểm S gọi là đỉnh của hình chóp.

    Đa giác A1A2…An gọi là mặt đáy của hình chóp.

    Các đoạn thẳng A1A2, A2A3, …, An-1An gọi là các cạnh đáy của hình chóp.

    Các đoạn thẳng SA1, SA2,…, SAn gọi là các cạnh bên của hình chóp.

    Các miền tam giác SA1A2, SA2A3,…,SAn-1An gọi là các mặt bên của hình chóp.

Nếu đáy của hình chóp là một miền tam giác, tứ giác, ngũ giác,… thì hình chóp tương ứng gọi là hình chóp tam giác, hình chóp tứ giác, hình chóp ngũ giác,…

Chú ý

    a.Hình chóp tam giác còn được gọi là hình tứ diện.

    b. Hình tứ diện có bốn mặt là những tam giác đều hay có tất cả các cạnh bằng nhau được gọi là hình tứ diện đều.

II. Bài tập Đại cương về đường thẳng và mặt phẳng

Câu 1. Trong các khẳng định sau, khẳng định nào đúng?

A. Qua 2 điểm phân biệt có duy nhất một mặt phẳng

B. Qua 3 điểm phân biệt bất kì có duy nhất một mặt phẳng

C. Qua 3 điểm không thẳng hàng có duy nhất một mặt phẳng

D. Qua 4 điểm phân biệt bất kì có duy nhất một mặt phẳng

Đáp án: C

Câu 2. Trong không gian, cho 4 điểm không đồng phẳng. Có thể xác định được bao nhiêu mặt phẳng phân biệt từ các điểm đã cho?

A. 6

B. 4

C. 3

D. 2

Đáp án: B

Câu 3. Cho tứ diện ABCD. Gọi E, F, G là các điểm lần lượt thuộc các cạnh AB, AC, BD sao cho EF cắt BC tại I, EG cắt AD tại H. Ba đường thẳng nào sau đây đồng quy?

A. CD, EF, EG.

B. CD, IG, HF.

C. AB, IG, HF.

D. AC, IG, BD.

Đáp án: B

Câu 4. Cho hình chóp S.ABCD có đáy ABCD không phải là hình thang. Trên cạnh SC lấy điểm M. Gọi N là giao điểm của đường thẳng SD với mặt phẳng AMB. Mệnh đề nào sau đây đúng?

A. Ba đường thẳng AB, CD, MN đôi một song song.

B. Ba đường thẳng AB, CD, MN đôi một cắt nhau.

C. Ba đường thẳng AB, CD, MN đồng quy.

D. Ba đường thẳng AB, CD, MN cùng thuộc một mặt phẳng.

Đáp án: C

Câu 5. Các yếu tố nào sau đây xác định một mặt phẳng duy nhất?

A. Ba điểm phân biệt              

B. Một điểm và một đường thẳng

C. Hai đường thẳng cắt nhau  

D. Bốn điểm phân biệt

Đáp án: C

Câu 6. Cho tứ diện SABC. Gọi L, M, N lần lượt là các điểm trên các cạnh SA, SB và AC sao cho LM không song song với AB, LN không song song với SC. Mặt phẳng LMN cắt các cạnh AB, BC, SC lần lượt tại K, I, J. Ba điểm nào sau đây thẳng hàng?

A. K, I, J

B. M, I, J.

C. N, I, J.

D. M, K, J.

Đáp án: B

Câu 7. Cho tứ diện ABCD. Gọi G là trọng tâm tam giác BCD, M là trung điểm CD, I là điểm ở trên đoạn thẳng AG, BI cắt mặt phẳng ACD tại J. Khẳng định nào sau đây sai?

A. AM=ACDABG.

B. A, J, M thẳng hàng.

C. J là trung điểm của  AM.

D. DJ=ACDBDJ. 

Đáp án: C

Câu 8. Trong các mệnh đề sau đây, mệnh đề nào sai?

A. Hai mặt phẳng có một điểm chung thì chúng có vô số điểm chung khác nữa

B. Hai mặt phẳng có một điểm chung thì chúng có một đường thẳng chung duy nhất

C. Hai mặt phẳng phân biệt có một điểm chung thì chúng có một đường thẳng chung duy nhất

D. Hai mặt phẳng cùng đi qua 3 điểm A , B , C không thẳng hàng thì hai mặt phẳng đó trùng nhau

Đáp án: B

Câu 9. Cho 3 đường thẳng d1,d2,d3 không cùng thuộc một mặt phẳng và cắt nhau từng đôi. Khẳng định nào sau đây đúng?

A. 3 đường thẳng trên đồng quy

B. 3 đường thẳng trên trùng nhau

C. 3 đường thẳng trên chứa 3 cạnh của một tam giác

D. Các khẳng định ở A, B, C đều sai

Đáp án: A

Câu 10. Thiết diện của 1 tứ diện có thể là:

A. Tam giác

B. Tứ giác

C. Ngũ giác

D. Tam giác hoặc tứ giác

Đáp án: D

Câu 11. Cho hình chóp S.ABCD có đáy là hình thang ABCD ABCD. Khẳng định nào sau đây sai?

A. Hình chóp S.ABCD có 4 mặt bên.

B. Giao tuyến của hai mặt phẳng SAC và SBD là SO là giao điểm của AC và  BD

C. Giao tuyến của hai mặt phẳng SAC và SBD là SI (I là giao điểm của AD và BC)

D. Giao tuyến của hai mặt phẳng SAC và SBD là đường trung bình của  ABCD.

Đáp án: D

Câu 12. Cho tứ diện ABCD. Gọi G là trọng tâm của tam giác BCD. Giao tuyến của mặt phẳng ACD và GAB là:

A. AM (M là trung điểm của AB)

B. AN (N là trung điểm của CD)

C. AH (H là hình chiếu của B trên CD)

D. AK (K là hình chiếu của C trên BD)

Đáp án: B

Câu 13. Cho điểm A không nằm trên mặt phẳng α chứa tam giác BCD. Lấy E, F là các điểm lần lượt nằm trên các cạnh AB, AC. Khi EF và BC cắt nhau tại I, thì I không phải là điểm chung của hai mặt phẳng nào sau đây?

A. BCD và DEF.

B. BCD và ABC.

C. BCD và AEF.

D. BCD và ABD.

Đáp án: D

Câu 14. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm AD và BC. Giao tuyến của hai mặt phẳng SMN và SAC là:

A. SD.

B. SO (O là tâm hình bình hành ABCD)

C. SG (G là trung điểm AB)

D. SF (F là trung điểm  CD)

Đáp án: B

Câu 15. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I, J lần lượt là trung điểm SA, SB.  Khẳng định nào sau đây sai?

A. IJCD là hình thang.

B. SABIBC=IB.

C. SBDJCD=JD.

D. IACJBD=AO (O là tâm  ABCD)

Đáp án: D

Câu 16. Cho tứ diện ABCD . Gọi M , N lần lượt là trung điểm của AC , CD . Giao tuyến của hai mặt phẳng MBD và ABN là:

A. đường thẳng MN

B. đường thẳng  AM

C. đường thẳng BG (G là trọng tâm tam giác ACD)

D. đường thẳng AH (H là trực tâm tam giác  ACD)

Đáp án: C

Câu 17. Cho hình chóp S. có đáy là hình thang ABCD ADBC. Gọi M là trung điểm CD. Giao tuyến của hai mặt phẳng MSB và SAC là:

 A. SI (I là giao điểm của AC và  BM)

 B. SJ (J là giao điểm của AM và BD)

 C. SO (O là giao điểm của AC và BD)

 D. SP (P là giao điểm của AB và CD)

Đáp án: A

Câu 18. Cho hình chóp S.ABCD có đáy ABCD là hình thang với ABCD. Gọi I là giao điểm của AC và BD. Trên cạnh SB lấy điểm M. Tìm giao tuyến của hai mặt phẳng ADM và SAC.

A.  SI

B. AE (E là giao điểm của DM và SI)

C. DM

D.  DE (E là giao điểm của DM và SI)

Đáp án: B

Câu 19. Cho tứ diện ABCD và điểm M thuộc miền trong của tam giác ACD. Gọi I và J lần lượt là hai điểm trên cạnh BC và BD sao cho IJ không song song với CD. Gọi H, K lần lượt là giao điểm của IJ với CD của MH và AC. Giao tuyến của hai mặt phẳng ACD và IJM là:

A.  KI

B.  KJ

C.  MI

D.  MH

Đáp án: A

Câu 20. Cho 4 điểm không đồng phẳng A,  B,  C,  D. Gọi I, K lần lượt là trung điểm của AD và BC Giao tuyến của IBC và KAD là:

A.  IK

B.  BC

C.  AK

D.  DK

Đáp án: A

Câu 21. Cho tứ diện ABCD. Gọi E và F lần lượt là trung điểm của AB và CD; G là trọng tâm tam giác BCD. Giao điểm của đường thẳng EG và mặt phẳng ACD là

A. điểm F

B. giao điểm của đường thẳng EG và AF

C. giao điểm của đường thẳng EG và AC

D. giao điểm của đường thẳng EG và CD

Đáp án: B

Câu 22. Cho tứ giác ABCD có AC và BD giao nhau tại O và một điểm S không thuộc mặt phẳng ABCD. Trên đoạn SC lấy một điểm M không trùng với S và C. Giao điểm của đường thẳng SD với mặt phẳng ABM là

A. giao điểm của SD và AB

B. giao điểm của SD và AM

C. giao điểm của SD và BK (với K=SOAM)

D. giao điểm của SD và MK (với K=SOAM)

Đáp án: C

Câu 23. Cho bốn điểm N không cùng ở trong một mặt phẳng. Gọi P lần lượt là trung điểm của D. Trên MND lấy điểm MND sao cho MN=AB2=a không song song với DM=DN=AD32=a3 (không trùng với các đầu mút). Gọi E là giao điểm của đường thẳng D với mặt phẳng H. Mệnh đề nào sau đây đúng?

A. E nằm ngoài đoạn BC về phía B

B. E nằm ngoài đoạn BC về phía  C

C. E nằm trong đoạn BC

D. E nằm trong đoạn BC và  EB, EC.

Đáp án: D

Câu 24. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là trung điểm của SC. Gọi I là giao điểm của AM với mặt phẳng SBD. Mệnh đề nào dưới đây đúng?

A. IA=2IM.

B. IA=3IM.

C. IA=2IM.

D. IA=2,5IM.

Đáp án: A

Câu 25. Cho tứ diện ABCD. Gọi M,N lần lượt là trung điểm các cạnh AB và AC, E là điểm trên cạnh CD với ED=3EC. Thiết diện tạo bởi mặt phẳng MNE và tứ diện ABCD là:

A. Tam giác MNE

B. Tứ giác MNEF với F là điểm bất kì trên cạnh BD

C. Hình bình hành MNEF với F là điểm trên cạnh BD mà EF // BC

D. Hình thang MNEF với F là điểm trên cạnh BD mà EF // BC

Đáp án: D

Câu 26. Cho tứ diện ABCD. Gọi H, K lần lượt là trung điểm các cạnh AB, BC. Trên đường thẳng CD lấy điểm M nằm ngoài đoạn CD. Thiết diện của tứ diện với  mặt phẳng HKM là:

 A. Tứ giác HKMN với NAD.

 B. Hình thang HKMN với NAD và  HKMN.

 C. Tam giác HKL với L=KMBD.

 D. Tam giác HKL với  L=HMAD.

Đáp án: C

Câu 27. Cho tứ diện đều ABCD có cạnh bằng a. Gọi G là trọng tâm tam giác ABC. Mặt phẳng GCD cắt tứ diện theo một thiết diện có diện tích là:

A. a232.     

B. a224.         

C. a226.        

D. a234.

Đáp án: B

Câu 28. Cho tứ diện đều ABCD có độ dài các cạnh bằng 2a. Gọi M, N lần lượt là trung điểm các cạnh AC, BC; P là trọng tâm tam giác BCD. Mặt phẳng MNP cắt tứ diện theo một thiết diện có diện tích là:

A. a2112.     

B. a224.          

C.  a2114.        

D. a234.

Đáp án: C

Câu 29. Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB và CD. Mặt phẳng α qua MN cắt AD, BC lần lượt tại P và Q. Biết MP cắt NQ tại I. Ba điểm nào sau đây thẳng hàng?

A. I, A, C.

B. I, B, D.

C. I, A, B.

D. I, C, D.

Đáp án: B

Câu 30. Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a    a>0. Các điểm M, N, P lần lượt là trung điểm của SA,  SB,  SC. Mặt phẳng MNP cắt hình chóp theo một thiết diện có diện tích bằng:

A. a2.

B. a22.

C. a24.

D. a216.

Đáp án: C

Câu 31: Phát biểu nào sau đây là đúng?

 (ảnh 3)A. Hình 1 và hình 4 là các hình chóp tứ giác

B. Hình 2 và hình 4 là các hình chóp tam giác

C. Hình 1,2,3 là các hình chóp

D. Hình 3,4 không phải là hình chóp.

Đáp án: C

Câu 32: Hai đường thẳng chéo nhau nếu.

A. Chúng không có điểm chung

B. Chúng không cắt nhau và không song song với nhau

C. Chúng không cùng nằm trong bất kì một mặt phẳng nào

D. Chúng không nằm trong bất cứ hai mặt phẳng nào cắt nhau.

Đáp án: C

Câu 33: Cho 4 điểm không đông phẳng. số mặt phẳng phân biệt mà mỗi mặt phẳng đi qua ba trong bốn điểm đó là:

A. 1      

B. 2      

C. 3      

D. 4

Đáp án: D

Câu 34: Có ít nhất bao nhiêu điểm không cùng thuộc một mặt phẳng?

A. 1      

B. 2      

C. 3      

D. 4

Đáp án: D

Câu 35: Cho hình chóp S.ABCDE, phát biều nào sau đây là đúng?

A. SE và AB cắt nhau

B. Đường thẳng SB nằm trong mặt phẳng SED

C. (SAE) và (SBC) có một điểm chung duy nhất

D. SD và BC chéo nhau.

 (ảnh 2)

Đáp án: D
Đánh giá

0

0 đánh giá