Với giải Bài 20 trang 97 SGK Toán 10 Tập 2 Kết nối tri thức chi tiết trong Bài tập ôn tập cuối năm giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem:
Giải bài tập Toán 10 Bài 20 trang 97 SGK Toán 10 Tập 2
Bài 20 trang 97 SGK Toán 10 Tập 2: Chọn ngẫu nhiên ba số khác nhau từ 23 số nguyên dương đầu tiên. Tìm xác suất để tổng ba số chọn được là một số chẵn.
Lời giải:
Không gian mẫu Ω là các tập {a; b; c} (với {a; b; c} là tập con của tập các số tự nhiên của đoạn [1; 23]).
Vậy n(Ω) = .
Gọi biến cố H: “Tổng ba số được chọn là một số chẵn”.
Ta có H ⊂ Ω là các tập {a; b; c} mà a + b + c chẵn.
Mà a + b + c chẵn khi và chỉ khi cả 3 số cùng chẵn hoặc có 2 số lẻ và 1 số chẵn.
Trường hợp 1. Cả ba số được chọn cùng chẵn. Tập các số chẵn thuộc đoạn [1; 23] là A = {2; 4; … ; 22}. Suy ra n(A) = 11. Do đó số tập con {a; b; c} ⊂ A là .
Vậy có 165 bộ ba số {a; b; c} mà cả ba số cùng chẵn.
Trường hợp 2. Hai số lẻ và một số chẵn.
Tập các số lẻ thuộc đoạn [1; 23] là B = {1; 3; …; 23}. Suy ra n(B) = 12.
Chọn 2 số lẻ trong 12 số lẻ có cách chọn.
Chọn 1 số chẵn trong 11 số chẵn có 11 cách chọn.
Theo quy tắc nhân, do đó số tập {a; b; c} với 2 số lẻ và 1 số chẵn là 66 . 11 = 726.
Vậy có 726 bộ ba số {a; b; c} gồm 2 số lẻ và 1 số chẵn.
Do đó, n(H) = 165 + 726 = 891.
Vậy xác suất của biến cố H là .
Xem thêm các bài giải Toán 10 Kết nối tri thức hay, chi tiết khác:
Bài 2 trang 95 SGK Toán 10 Tập 2: Cho tam giác ABC. Có bao nhiêu điểm M thỏa mãn = 3?...
Bài 5 trang 95 SGK Toán 10 Tập 2: Trong khai triển nhị thức Newton của , hệ số của x2 là:...
Bài 6 trang 95 SGK Toán 10 Tập 2: Xác suất để trong hai người được chọn có ít nhất một nữ là:...
Bài 7 trang 95 SGK Toán 10 Tập 2: Cho các mệnh đề:...
Bài 10 trang 96 SGK Toán 10 Tập 2: Giải các phương trình chứa căn thức sau:...
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.