Với Giải SBT Toán 10 trang 50 Tập 1 trong Bài 8: Tổng và hiệu của hai vectơ bài tập Toán lớp 10 Tập 1 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 10 trang 50.
Cho hình bình hành ABCD tâm O. M là một điểm tuỳ ý thuộc cạnh BC, khác B và C
Bài 4.8 trang 50 sách bài tập Toán lớp 10 Tập 1: Cho hình bình hành ABCD tâm O. M là một điểm tuỳ ý thuộc cạnh BC, khác B và C. MO cắt cạnh AD tại N.
a) Chứng minh rằng O là trung điểm MN.
b) Gọi G là trọng tâm tam giác BCD. Chứng minh rằng G cũng là trọng tâm tam giác MNC.
Lời giải:
a) Vì ABCD là hình bình hành tâm O
Nên O là trung điểm của AC và BD và
Xét ∆ODN và ∆OBM có:
OD = OB (do O là trung điểm của BD),
(hai góc đối đỉnh),
(do )
∆ODN = ∆OBM (g.c.g)
ON = OM (hai cạnh tương ứng)
O là trung điểm của NM.
Vậy O là trung điểm của NM.
b) Vì G là trọng tâm ∆BCD nên
(quy tắc hiệu)
(*)
Ta có: O là trung điểm của NM (câu a), O là trung điểm của BD (câu a)
BMDN là hình bình hành
Thay vào (*) ta được
Do đó
G là trọng tâm tam giác MNC.
Vậy G là trọng tâm tam giác MNC.
Xem thêm lời giải vở bài tập Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:
Bài 4.9 trang 50 sách bài tập Toán lớp 10 Tập 1: Cho tứ giác ABCD...
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.