Cho hàm số: f(x) = -x + 1 khi x < 0; f(x) = 0 khi x = 0; f(x) = 1 khi x > 0

401

Với Giải SBT Toán 10 Tập 1 trong Bài 1: Hàm số và đồ thị Sách bài tập Toán lớp 10 Tập 1 Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 10.

Cho hàm số: f(x) = -x + 1 khi x < 0; f(x) = 0 khi x = 0; f(x) = 1 khi x > 0

Bài 4 trang 42 SBT Toán 10Cho hàm số: f(x) = -x +  1 khi x < 00 khi x = 01 khi x > 0.

a) Tìm tập xác định của hàm số trên.

b) Tính giá trị của hàm số khi x = – 2; x = 0; x = 2021.

Lời giải:

a) Biểu thức – x + 1 luôn xác định với x < 0, biểu thức 0 luôn xác định với x = 0 và biểu thức 1 luôn xác định với x > 0.

Do đó tập xác định của hàm số f(x) là D = ℝ.

Vậy D = ℝ.

b) Với x = – 2 < 0 thì f(x) = – x + 1. Khi đó thay x = 2 vào hàm số ta được: f(– 2) = – (– 2) + 1 = 3.

Với x = 0 thì f(x) = 0. Khi đó thay x = 0 vào hàm số ta được: f(0) = 0.

Với x = 2 021 > 1 thì f(x) = 1. Khi đó thay x = 2 021 vào hàm số ta được: f(2 021) = 1.

Vậy giá trị của hàm số tại x = – 2; x = 0; x = 2 021 lần lượt là f(– 2) = 3; f(0) = 0 và f(2 021) = 1.

Xem thêm lời giải sách bài tập Toán lớp 10 Cánh diều với cuộc sống hay, chi tiết khác:

Bài 1 trang 42 SBT Toán 10Trong các công thức sau, công thức nào không biểu diễn y là hàm số của x

Bài 2 trang 42 SBT Toán 10Cho đồ thị hàm số y = f(x) ở Hình 4. Phát biểu nào sau đây là đúng?

Bài 3 trang 42 SBT Toán 10Tìm tập xác định của mỗi hàm số sau

Bài 5 trang 43 SBT Toán 10Quan sát đồ thị hàm số y = f(x) ở Hình 5.

Bài 6 trang 43 SBT Toán 10Cho bảng biến thiên hàm số y = f(x) như sau

Bài 7 trang 43 SBT Toán 1Cho hàm số y = . Chứng tỏ hàm số đã cho đồng biến trên khoảng (–∞; 0) và (0; +∞)

Bài 8 trang 43 SBT Toán 10Một nhân viên bán hàng sẽ nhận được một mức lương cơ bản là 5 triệu đồng mỗi tháng

Đánh giá

0

0 đánh giá