Toán 10 Chân trời sáng tạo trang 122 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu

211

Với giải Câu hỏi trang 122 Toán 10 Tập 1 Chân trời sáng tạo trong Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem: 

Toán 10 Chân trời sáng tạo trang 122 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu

Thực hành 2 trang 122 Toán 10 Tập 1Hãy tìm giá trị ngoại lệ của mẫu số liệu: 37; 12; 3; 9; 10; 9; 12; 3; 10.

Phương pháp giải:

Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm: X1,X2,...,Xn

Bước 2: Q2=Me={Xk+1(n=2k+1)12(Xk+Xk+1)(n=2k)

Q1 là trung vị của nửa số liệu đã sắp xếp bên trái Q2 (không bao gồm Q2 nếu n lẻ)

Q3 là trung vị của nửa số liệu đã sắp xếp bên phải Q2 (không bao gồm Q2 nếu n lẻ)

Khoảng tứ phân vị: ΔQ=Q3Q1

Bước 3: Tìm x trong mẫu sao cho x>Q3+1,5ΔQ hoặc x<Q11,5ΔQ

Lời giải 

Xét mẫu số liệu đã sắp xếp là:

3;3;9;9;10;10;12;12;37.

Cỡ mẫu là n=9 là số lẻ nên giá trị tứ phân vị thứ hai là: Q2=10.

Tứ phân vị thứ nhất là trung vị của mẫu: 3;3;9;9.. Do đó Q1=6.

Tứ phân vị thứ ba là trung vị của mẫu: 10;12;12;37.. Do đó Q3=12

Khoảng tứ phân vị của mẫu là: ΔQ=126=6

Giá trị ngoại lệ x thỏa mãn x>12+1,5.6=21 hoặc x<61,5.6=3.

Vậy giá trị ngoại lệ của mẫu số liệu đó là 37.

2. PHƯƠNG SAI VÀ ĐỘ LỆCH CHUẨN 

HĐ Khám phá 2 trang 122 Toán 10 Tập 1Hai cung thủ A và B đã ghi lại kết quả từng lần bắn của mình ở bảng sau:

Cung thủ A

8

9

10

7

6

10

6

7

9

8

Cung thủ B

10

6

8

7

9

9

8

7

8

8

a) Tính kết quả trung bình của mỗi cung thủ trên

b) Cung thủ nào có kết quả các lần bắn ổn định hơn?

Lời giải 

a) Kết quả trung bình của Cung thủ A là:

8+9+10+7+6+10+6+7+9+810=8

Kết quả trung bình của Cung thủ A là:

10+6+8+7+9+9+8+7+8+810=8

b)

+) Khoảng biến thiên số điểm của cung thủ A là: R=106=4

Xét mẫu số liệu đã sắp xếp là:

667788991010

Cỡ mẫu là n=10 là số chẵn nên giá trị tứ phân vị thứ hai là: Q2=8.

Tứ phân vị thứ nhất là trung vị của mẫu:6,6,7,7,8. Do đó Q1=7.

Tứ phân vị thứ ba là trung vị của mẫu: 8,9,9,10,10. Do đó Q3=9

Khoảng tứ phân vị của mẫu là: ΔQ=97=2

+) Khoảng biến thiên số điểm của cung thủ A là: R=106=4

Xét mẫu số liệu đã sắp xếp là:

67788889910

Cỡ mẫu là n=10 là số chẵn nên giá trị tứ phân vị thứ hai là: Q2=8.

Tứ phân vị thứ nhất là trung vị của mẫu:6,6,7,7,8. Do đó Q1=7.

Tứ phân vị thứ ba là trung vị của mẫu: 8,9,9,10,10. Do đó Q3=9

Khoảng tứ phân vị của mẫu là: ΔQ=97=2

=> Nếu so sánh khoảng chênh lệch và khoảng tứ phân vị thì không xác định được kết quả của cung thủ nào ổn định hơn.

Đánh giá

0

0 đánh giá