Toán 10 Chân trời sáng tạo trang 24 Bài 1: Quy tắc cộng và quy tắc nhân

441

Với giải Câu hỏi trang 24 Toán 10 Tập 2 Chân trời sáng tạo trong Bài 1: Quy tắc cộng và quy tắc nhân giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem: 

Toán 10 Chân trời sáng tạo trang 24 Bài 1: Quy tắc cộng và quy tắc nhân

Thực hành 2 trang 24 Toán 10 Tập 2: Một mẫu xe ô tô có bốn màu ngoại thất là trắng, đen, cam và bạc. Mẫu xe này cũng có hai màu nội thất là đen và xám.

a) Khách hàng có bao nhiêu lựa chọn về màu ngoại thất và nội thất khi mua một chiếc xe ô tô mẫu này?

b) Hãy vẽ sơ đồ hình cây để giải thích cho kết quả tính toán ở trên.

Lời giải 

a) Việc chọn màu nội thất và ngoại thất của mẫu o tô này gồm 2 công đoạn:

Công đoạn thứ nhất: Chọn màu nội thất, có 2 cách chọn: đen hoặc xám

Công đoạn thứ hai: Chọn màu ngoại thất, có 4 cách chọn: trắng, đen, cam hoặc bạc

Theo quy tắc nhân, có 2.4=8cách chọn màu nội thất và ngoại thất của một chiếc ô tô mẫu này

b) Sơ đồ hình cây có dạng như sau

HĐ Khám phá 2 trang 24 Toán 10 Tập 2 Chân trời sáng tạo (ảnh 1)

Thực hành 3 trang 24 Toán 10 Tập 2: Có nhiều nhất bao nhiêu đoạn phân tử RNA khác nhau chứa 4 phân tử nucleotide, trong đó:

a) Không có nucleotide A nào?

b) Có nucleotide A nằm ở vị trí đầu tiên?

Phương pháp giải:

Bước 1: Xác định cách chọn từng nucleotide

Bước 2: Áp dụng quy tắc nhân

Lời giải 

a) Có thể tạo nên một đoạn phân tử RNA có 4 phân tử nucleotide là một công việc gồm 4 công đoạn, mỗi công đoạn ứng với việc chọn một trong ba loại nucleotide C, G hoặc U cho mỗi vị trí (thứ nhất, thứ hai, thứ ba và cuối cùng) của đoạn. Như vậy, mỗi công đoạn có 3 cách thực hiện. Theo quy tắc nhân, 4 công đoạn có số cách thực hiện là

                   3.3.3.3=34

Vậy có nhiều nhất 34đoạn phân tử RNA khác nhua cùng có 4 phân tử nucleotide và không có nucleotide A

b)

Có thể tạo nên một đoạn phân tử RNA có 4 phân tử nucleotide là một công việc gồm 4 công đoạn, mỗi công đoạn ứng với việc chọn một trong ba loại nucleotide C, G hoặc U cho mỗi vị trí (thứ nhất, thứ hai, thứ ba và cuối cùng) của đoạn.

Công đoạn thứ nhất: Chọn nucleotide A ở vị trí đầu tiên, có 1 cách chọn

Công đoạn thứ hai: Chọn một trong bốn loại nucleotide A, C, G hoặc U cho mỗi vị trí (thứ hai, thứ 3 và vị trí cuối) của đoạn. Như vậy mỗi công đoạn sau sẽ có 4 cách thực hiện.

Theo quy tắc nhân, 4 công đoạn thực hiện có số cách là

                             1.4.4.4=43

Vậy có nhiều nhất 43đoạn phân tử RNA khác nhau chứa 4 phân tử nucleotide có nucleotide A nằm ở vị trí đầu tiên.

Vận dụng trang 24 Toán 10 Tập 2: Trong phần khởi động đầu bài học này, nếu công ty có 2500 nhân viên thì số mã số như vậy có đủ để cấp cho mỗi nhân viên một mã số riêng hay không?

Phương pháp giải:

Bước 1: Xác định số cách chọn của từng công đoạn (chọn chữ cái, chọn 2 chữ số sau)

Bước 2: Áp dụng quy tắc nhân

Lời giải 

Để công ty kiến tạo mã số gồm 3 kí tự gồm một chữ cái tiếng anh viết hoa đứng trước hai chữ số cần thực hiện 3 công đoạn

Công đoạn 1: Chọn 1 trong 24 chữ cái tiếng anh viết hoa đứng đầu, có 24 cách chọn

Công đoạn 2: Chọn 1 chữ số trong 10 chữ số cho hai vị trí số sau chữ cái kia, có 10 cách chọn

Theo quy tắc nhân, 3 công đoạn thực hiện có số cách là

                             24.10.10=2400

Suy ra có 2400 mã số nhân viên được tạo ra theo yêu cầu của mã số

2400<2500

Vậy số mã số theo công ty đề ra không đủ để cấp cho nhân viên (mỗi người một mã) nếu công ty đó có 2500 nhân viên.

Bài tập

Bài 1 trang 24 Toán 10 Tập 2: Một thùng chứa 6 quả dưa hấu, một thùng khác chứa 15 quả thanh long. Từ hai thùng này,

a) có bao nhiêu cách chọn một quả dưa hấu hoặc một quả thanh long.

b) có bao nhiêu cách chọn một quả dưa hấu và 1 quả thanh long.

Bài 1 trang 24 Toán 10 Tập 2 Chân trời sáng tạo (ảnh 1)

Phương pháp giải

Bước 1: Xác định cách chọn từng loại quả

Bước 2:     

a) Áp dụng quy tắc cộng

b) Áp dụng quy tắc nhân

Lời giải 

a) Việc chọn một quả dưa hấu hoặc một quả thanh long được thực hiện qua 2 phương án

Phương án 1: Chọn một quả dưa hấu, có 6 cách thực hiện

Phương án 2: Chọn một quả thanh long, có 15 cách thực hiện

Áp dụng quy tắc cộng, số cách chọn một quả dưa hấu hoặc một quả thanh long là

                             6+15=21 (cách chọn)

b) Việc chọn một quả dưa hấu và một quả thanh long được thực hiện qua 2 công đoạn:

Công đoạn 1: Chọn một quả dưa hấu, có 6 cách thực hiện

Công đoạn 2: Chọn một quả thanh long, có 15 cách thực hiện

Áp dụng quy tắc nhân, số cách chọn một quả thanh long và một quả dưa hấu là

                             6.15=90 (cách chọn)

Bài 2 trang 24 Toán 10 Tập 2: Tung đồng thời một đồng xu và một con súc sắc, nhận được kết quả là mặt xuất hiện trên đồng xu (sấp hay ngửa) và số chấm xuất hiện trên con xúc xắc.

a) Tính số kết quả có thể xảy ra

b) Vẽ sơ đồ hình cây và liệt kê tất cả cả các kết quả đó.

Bài 2 trang 24 Toán 10 Tập 2 Chân trời sáng tạo (ảnh 2)

Phương pháp giải

a) Bước 1: Xác định số kết quả xuất hiện trên đồng xu và xúc xắc

Bước 2: Áp dụng quy tắc nhân

Lời giải 

a) Kết quả của đồng xu và xúc xắc xảy ra đồng thời nên kết quả xảy ra gồm 2 kết quả liên tiếp nhau

Kết quả 1: Kết quả của đồng xu, có 2 kết quả: Sấp và ngửa

Kết quả 2: Kết quả của xúc xắc, có 6 kết quả: mỗi kết quả của mỗi mặt con xúc xắc

Áp dụng quy tắc nhân, ta có số kết quả có thẻ xuất hiện khi gieo đồng thời một đồng xu và một con xúc xắc là:

                             2.6=12

Vậy có 12 kết quả có thể xáy ra

b) 

Bài 2 trang 24 Toán 10 Tập 2 Chân trời sáng tạo (ảnh 1)

Bài 3 trang 24 Toán 10 Tập 2: Tại một nhà hàng chuyên phục vụ cơm trưa văn phòng, thực đơn có 5 món chính, 3 món phụ và 4 loại đồ uống. Tại đây thực khách có bao nhiêu cách chọn bữa trưa gồm một món chính, một món phụ và một loại đồ uống.

Phương pháp giải

Bước 1: Xác định số cách chọn mỗi loại thức ăn và đồ uống (món chính, món phụ và đồ uống)

Bước 2: Áp dụng quy tắc nhân.

Lời giải 

Việc thực hiện bữa trưa gồm một món chính, một món phụ và một loại đồ uống gồm 3 công đoạn

Công đoạn 1: Chọn 1 món chính trong 5 món, có 5 cách chọn

Công đoạn 2: Chọn 1 món phụ trong 3 món, có 3 cách chọn

Công đoạn 3: Chọn 1 loại đồ uống trong 4 loại, có 4 cách chọn

Áp dụng quy tắc nhân, ta có số cách chọn một bữa trưa đầy đủ là

                             5.3.4=60

Vậy có 60 cách chọn bữa trưa gồm một món chính, một món phụ và một loại đồ uống.

Bài 4 trang 24 Toán 10 Tập 2: Có bao nhiêu số tự nhiên có 3 chữ số, trong đó chữ số hàng trăm là chữ số chẵn, chữ số hàng đơn vị là chữ số lẻ.

Phương pháp giải

Bước 1: Xác định số cách chọn của các vị trí (chữ số hàng trăm, hàng chục, hàng đơn vị)

Bước 2: Áp dụng quy tắc nhân

Lời giải 

Giả sử chữ số cần tìm có dạng abc¯

Chữ số a là chữ số hàng trăm và là chữ số chẵn nên có 4 cách chọn (2, 4, 6, 8)

Chữ số c là chữ số hàng số hàng đơn vị và là chữ số lẻ nên có 5 cách chọn (1, 3, 5, 7, 9)

Chữ số b không có điều kiện ràng buộc nên có 10 cách chọn từ 10 chữ số bất kì

Áp dụng quy tắc nhân, ta có số số tự nhiên thỏa mãn yêu cầu là:

                             4.5.10=200

Vậy có 200 số tự nhiên có 3 chữ số, trong đó chữ số hàng trăm là chữ số chẵn, chữ số hàng đơn vị là chữ số lẻ.

Bài 5 trang 24 Toán 10 Tập 2: An có thể đi từ nhà đến trường theo các con đường như hình 11, trong đó có những con đường đi qua nhà sách.

a) An có bao nhiêu cách đi từ nhà đến trường mà có đi qua nhà sách?

b) An có bao nhiêu cách đi từ nhà đến trường?

Lưu ý:  Chỉ tính những đường đi qua các điểm (nhà An, nhà sách, nhà trường) không quá 1 lần 

Bài 5 trang 24 Toán 10 Tập 2 Chân trời sáng tạo  (ảnh 1)

Phương pháp giải

a)       Bước 1: Xác định số cách đi từ nhà đến nhà sách, từ nhà sách đến trường

          Bước 2: Áp dụng quy tắc nhân

b)       Bước 1: Xác định số cách đi từ nhà đến trường qua nhà sách

          Bước 2: Xác định số cách đi từ nhà đến trường không qua nhà sách

          Bước 3: Áp dụng quy tắc cộng

Lời giải

a) Việc đi từ nhà đến trường qua nhà sách được thực hiện qua hai công đoạn:

Công đoạn 1: Đi từ nhà đến nhà sách, có 3 con đường

Công đoạn 2: Đi từ nhà sách đến trường, có 2 con đường

Số cách đi từ nhà đến trường qua nhà sách có số cách là:

                   3.2=6(cách)

b) Việc đi từ nhà đến trường có 2 phương án

Phương án 1: Đi từ nhà đến trường qua nhà sách, có 6 cách thực hiện (kết quả của câu a))

Phương án 2: Đi từ nhà đến trường không qua nhà sách có 2 cách

Áp dụng quy tắc cộng, ta có số cách đi từ nhà đến trường là:

                             6+2=8 (cách).

Đánh giá

0

0 đánh giá