Toán 10 Kết nối tri thức trang 65 Bài 10: Vecto trong mặt phẳng toạ độ

357

Với giải Câu hỏi trang 65 Toán 10 Tập 1 Kết nối tri thức trong Bài 10: Vecto trong mặt phẳng toạ độ học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem:

Toán 10 Kết nối tri thức trang 65 Bài 10: Vecto trong mặt phẳng toạ độ

Bài 4.16 trang 65 Toán 10: Trong mặt phẳng tọa độ Oxy, cho các điểm M(1; 3), N(4; 2)

a) Tính độ dài các đoạn thẳng OM, ON, MN.

b) Chứng minh rằng tam giác OMN vuông cân.

Phương pháp giải:

Độ dài vectơOM(x,y)là |OM|=x2+y2

Lời giải:

a) Ta có: M(1; 3) và N (4; 2)

OM(1;3),ON(4;2),MN=(41;23)=(3;1)

OM=|OM|=12+32=10,ON=|ON|=42+22=25,MN=|MN|=32+(1)2=10

b) Dễ thấy: OM=10=MNΔOMN cân tại M.

Lại có: OM2+MN2=10+10=20=ON2

 Theo định lí Pythagore đảo, ta có ΔOMNvuông tại M.

Vậy ΔOMN vuông cân tại M.

Bài 4.17 trang 65 Toán 10: Trong mặt phẳng tọa độ Oxy, cho các vectơ a=3.i2.j,b=(4;1) và các điểm M (-3; 6), N(3; -3).

a) Tìm mối liên hệ giữa các vectơ MN và 2ab.

b) Các điểm O, M, N có thẳng hàng hay không?

c) Tìm điểm P(x; y) để OMNP là một hình bình hành.

Phương pháp giải:

b) Các điểm O, M, N thẳng hàng khi và chỉ khi hai vectơ OM,ON cùng phương

c) OMNP là một hình hành khi và chỉ khi OM=PN

Lời giải:

a) Ta có: b=(4;1) và a=3.i2.ja(3;2)

2ab=(2.34;2.(2)(1))=(2;3)

Lại có: M (-3; 6), N(3; -3)

MN=(3(3);36)=(6;9)

Dễ thấy:(6;9)=3.(2;3) MN=3(2ab)

b) Ta có: OM=(3;6) ( do M(-3; 6)) và ON=(3;3) (do N (3; -3)).

Hai vectơ này không cùng phương (vì 3363).

Do đó các điểm O, M, N không cùng nằm trên một đường thẳng.

Vậy chúng không thẳng hàng.

c) Các điểm O, M, N không thẳng hàng nên OMNP là một hình hành khi và chỉ khi OM=PN.

 

Do OM=(3;6),PN=(3x;3y)  nên

OM=PN{3=3x6=3y{x=6y=9

Vậy điểm cần tìm là P (6; -9).

Bài 4.18 trang 65 Toán 10: Trong mặt phẳng tọa độ Oxy, cho các điểm A(1; 3), B(2; 4), C(-3; 2).

a) Hãy giải thích vì sao các điểm A, B, C không thẳng hàng.

b) Tìm tọa độ trung điểm M của đoạn thẳng AB.

c) Tìm tọa độ trọng tâm G của tam giác ABC.

d) Tìm điểm D(x; y) để O(0; 0) là trọng tâm của tam giác ABD.

Phương pháp giải:

a) Các điểm A, B, C thẳng hàng khi và chỉ khi hai vectơ AB,AC cùng phương

b) Trung điểm M của đoạn thẳng AB có tọa độ là (xA+xB2;yA+yB2)

c) Trọng tâm G của tam giác ABC có tọa độ là (xA+xB+xC3;yA+yB+yC3)

d) Để O(0; 0) là trọng tâm của tam giác ABD thì (0;0)=(xA+xB+xD3;yA+yB+yD3)

Lời giải:

a) Ta có: AB=(21;43)=(1;1),AC=(31;23)=(4;1)

Hai vectơ này không cùng phương (vì 1411).

Do đó các điểm A, B, C không cùng nằm trên một đường thẳng.

Vậy chúng không thẳng hàng.

b) Trung điểm M của đoạn thẳng AB có tọa độ là (1+22;3+42)=(32;72)

c) Trọng tâm G của tam giác ABC có tọa độ là (1+2+(3)3;3+4+23)=(0;3)

d) Để O(0; 0) là trọng tâm của tam giác ABD thì (0;0)=(xA+xB+xD3;yA+yB+yD3)

(0;0)=(1+2+x3;3+4+y3)

(0;0)=(1+2+x;3+4+y)(0;0)=(x+3;y+7){0=x+30=y+7{x=3y=7

Vậy tọa độ điểm D là (-3; -7).

Bài 4.19 trang 65 Toán 10: Sự chuyển động của một tàu thủy được thể hiện trên một mặt phẳng tọa độ như sau:

Tàu khởi hành từ vị trí A(1; 2) chuyển động thẳng đều với vận tốc (tính theo giờ) được biểu thị bởi vectơ v=(3;4). Xác định vị trí của tàu (trên mặt phẳng tọa độ) tại thời điểm sau khi khởi hành 1,5 giờ.

Phương pháp giải:

Lập luận chỉ ra AB=1,5.v

Lời giải:

Gọi B(x; y) là vị trí của tàu (trên mặt phẳng tọa độ) tại thời điểm sau khi khởi hành 1,5 giờ.

Do tàu khởi hành từ A đi chuyển với vận tốc được biểu thị bởi vectơ v=(3;4) nên cứ sau mỗi giờ, tàu đi chuyển được một quãng bằng |v|.

Vậy sau 1,5 giờ tàu di chuyển tới B, ta được: AB=1,5.v

 (x1;y2)=1,5.(3;4){x1=4,5y2=6{x=5,5y=8

Vậy sau 1,5 tàu ở vị trí (trên mặt phẳng tọa độ) là B(5,5; 8).

Bài 4.20 trang 65 Toán 10: Trong hình 4.38, quân mã đang ở vị trí có tọa độ (1; 2). Hỏi sau một nước đi, quân mã có thể đến những vị trí nào?

Bài 4.20 trang 65 Toán 10 Tập 1 I Kết nối tri thức  (ảnh 1)

Phương pháp giải:

+) Quân mã đi theo đường chéo hình chữ nhật dài 3 ô, rộng 2 ô.

Bước 1: Đánh dấu các vị trí trên bàn cờ mà quân mã có thể đi ở nước cờ tiếp theo.

Bước 2: Chiếu vuông góc xuống các trục Ox, Oy để xác định tọa độ.

Lời giải:

a) Quân mã đi theo đường chéo hình chữ nhật có chiều dài 3 ô, chiều rộng 2 ô.

Do đó, từ vị trí hiện tại, quân mã có thể đi đến các vị trí A, B, C, D, E, F như dưới đây:

A có tọa độ (3; 3)

B có tọa độ (3; 1)

C có tọa độ (2; 0)

D có tọa độ (0; 0)

E có tọa độ (0; 4)

F có tọa độ (2; 4)

Vậy quân mã có thể đi đến các vị trí A(3;3), B(3;1), C(2;0), D(0;0), E(0;4), F(2;4).

Đánh giá

0

0 đánh giá