Toptailieu biên soạn và giới thiệu giải sách bài tập Toán 10 Bài 11 (Kết nối tri thức): Tích vô hướng của hai vectơ hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm các bài tập từ đó nâng cao kiến thức và biết cách vận dụng phương pháp giải vào các bài tập trong SBT Toán 10 Bài 11.
SBT Toán 10 Kết nối tri thức Bài 11: Tích vô hướng của hai vectơ
Bài 4.29 trang 65 sách bài tập Toán lớp 10 Tập 1: Cho tam giác đều ABC có độ dài các cạnh bằng 1.
a) Gọi M là trung điểm của BC. Tính tích vô hướng của các cặp vectơ và và
b) Gọi N là điểm đối xứng với B qua C. Tính tích vô hướng
c) Lấy điểm P thuộc đoạn AN sao cho AP = 3PN. Hãy biểu thị các vectơ theo hai vectơ và Tính độ dài đoạn MP.
Lời giải:
a) Tam giác ABC đều có M là trung điểm của BC nên đường trung tuyến AM đồng thời là đường phân giác và đường cao.
Gọi Ax là tia đối của tia AM, tia Ay là tia đối của tia AB.
Do đó
Xét tam giác BAM vuông tại M, theo định lí Pythagoras ta có:
b) • Vì M là trung điểm của BC nên
• N đối xứng với B qua C nên C là trung điểm của BN
Do đó
Vậy
c) • Vì P thuộc đoạn thẳng AN thỏa mãn AP = 3PN
• Ta có:
Vậy và
Bài 4.29 trang 65 sách bài tập Toán lớp 10 Tập 1: Cho tam giác đều ABC có độ dài các cạnh bằng 1.
a) Gọi M là trung điểm của BC. Tính tích vô hướng của các cặp vectơ và và
b) Gọi N là điểm đối xứng với B qua C. Tính tích vô hướng
c) Lấy điểm P thuộc đoạn AN sao cho AP = 3PN. Hãy biểu thị các vectơ theo hai vectơ và Tính độ dài đoạn MP.
Lời giải:
a) Tam giác ABC đều có M là trung điểm của BC nên đường trung tuyến AM đồng thời là đường phân giác và đường cao.
Gọi Ax là tia đối của tia AM, tia Ay là tia đối của tia AB.
Do đó
Xét tam giác BAM vuông tại M, theo định lí Pythagoras ta có:
b) • Vì M là trung điểm của BC nên
• N đối xứng với B qua C nên C là trung điểm của BN
Do đó
Vậy
c) • Vì P thuộc đoạn thẳng AN thỏa mãn AP = 3PN
• Ta có:
Vậy và
a) Chứng minh rằng các đường thẳng AC và BM vuông góc với nhau.
b) Gọi H là giao điểm của AC, BM. Gọi N là trung điểm của AH và P là trung điểm của CD. Chứng minh rằng tam giác NBP là một tam giác vuông.
Lời giải:
Vì AB ⊥ AD nên
ABCD là hình chữ nhật nên cũng là hình bình hành nên ta có:
(quy tắc hình bình hành)
M là trung điểm của AD nên
Suy ra
Khi đó
(do )
Do đó
AC ⊥ BM.
b) • Xét tam giác ABC vuông tại C, theo định lí Pythagore ta có:
AC2 = AB2 + BC2 = 1 + = 3
Theo hệ thức lượng trong tam giác vuông ta có:
AB2 = AH.AC
Khi đó và
Ta có (quy tắc ba điiểm)
Vì N là trung điểm của AH nên
• Có N là trung điểm của HA và P là trung điểm của CD, theo kết quả bài 4.12, trang 58, Sách giáo khoa Toán 10, tập một, ta có:
Khi đó
Do đó
a) AM vuông góc với DE;
b) BE vuông góc với CD;
c) Tam giác MNP là một tam giác vuông cân.
Lời giải:
a) +) Vì M là trung điểm của BC nên
+) Theo quy tắc ba điểm ta có:
Mà AB ⊥ AD nên
Và AC ⊥ AE nên
Do đó
Ta có:
•
Và
• AB = AD (do ∆ABD vuông cân tại A)
Và AC = AE (do ∆ACE vuông cân tại A)
•
Và
Do đó
b) Ta có: và
(do và )
Ta có:
•
Và
• AB = AD và AC = AE
•
BE ⊥ CD.
c) Ta có:
BE = CD (1)
Xét tam giác BCD có M, N lần lượt là trung điểm của BC, BD
Nên MN là đường trung bình của ∆BCD
và MN // CD (2)
Chứng minh tương tự ta cũng có:
MP là đường trung bình của ∆BCE
và MP // BE (3)
Từ (1), (2) và (3) suy ra MN = MP.
Vì BE ⊥ CD (câu b), MN // CD và MP // BE
Nên MN ⊥ MP
Tam giác MNP có MN = MP và
Suy ra tam giác MNP là tam giác vuông cân tại M.
Bài 4.32 trang 65 sách bài tập Toán lớp 10 Tập 1: Cho hai vectơ và thoả mãn
a) Tính tích vô hướng
b) Tính số đo của góc giữa hai vectơ và
Lời giải:
Gọi ba điểm A, B, C sao cho
Khi đó
Và AB = 6, BC = 8 và AC = 10.
Xét tam giác ABC có:
• AB2 + BC2 = 62 + 82 =100
AC2 = 102 = 100
AB2 + BC2 = AC2
Do đó tam giác ABC vuông tại B (định lí Pythagore đảo)
•
a) Ta có
Vậy
b)
Vậy
Lời giải:
Gọi H và O là tâm đường tròn ngoại tiếp tam giác ABC.
• Vì D, M lần lượt là hình chiếu của H và O lên BC, nên là hình chiếu của trên giá của
Theo định lí hình chiếu (được giới thiệu ở phần Nhận xét của Ví dụ 2, trang 62, Sách Bài tập Toán 10, tập một) ta có:
(1)
Chứng minh tương tự ta cũng có:
•
(2)
•
(3)
Từ (1), (2) và (3) ta có:
= 0
Vậy
a) Tìm toạ độ của điểm C thuộc trục hoành sao cho tam giác ABC vuông tại A. Tính chu vi và diện tích của tam giác ABC.
b) Tìm toạ độ của điểm D sao cho tam giác ABD vuông cân tại A.
Lời giải:
a) Vì tam giác ABC vuông tại A nên AB ⊥ AC hay
Do đó
Giả sử C(x; 0) là điểm thuộc trục hoành.
Với A(2; 1), B(4; 3) và C(x; 0) ta có:
và
Khi đó 2(x – 2) + 2(–1) = 0
2x – 4 – 2 = 0
2x = 6
x = 3
Vậy C(3; 0).
Ta có:
•
•
• (theo định lí Pythagore)
Khi đó chu vi tam giác ABC là:
AB + AC + BC = (đơn vị độ dài)
Diện tích tam giác ABC là:
(đơn vị diện tích)
b) Tam giác ABD vuông cân tại A nên AB ⊥ AD và AB = AD
• Với AB ⊥ AD ta có
Mà (theo câu a)
Nên cùng phương với
Gọi D(a; b) là tọa độ điểm D cần tìm.
Mà
Do đó cùng phương với khi và chỉ khi:
• Với AB = AD ta có AB2 = AD2
8 = (a – 2)2 + (2 – a)2 (do b – 1 = 2 – a)
8 = 2.(a – 2)2
(a – 2)2 = 4
Với a = 4 thì b – 1 = 2 – 4 b = –1 ta có điểm D1(4; –1).
Với a = 0 thì b – 1 = 2 – 0 b = 3 ta có điểm D2(0; 3).
Vậy có hai điểm D thỏa mãn yêu cầu đề bài là D1(4; –1) và D2(0; 3).
Lời giải:
Gọi I là giao điểm của AC và BD
Vì ABCD là hình vuông nên ta có: I là trung điểm của AC; AC = BD và AC ⊥ BD tại I.
• I là trung điểm của AC nên:
Giả sử B(x; y) (y < 0) và D(a; b)
Vì I là trung điểm của BD nên ta có:
Với A(1; 4); C(9; 2); B(x; y) và D(10 – x; 6 – y) ta có:
và
• AC ⊥ BD
8.(10 – 2x) + (–2).(6 – 2y) = 0
80 – 16x – 12 + 4y = 0
4y = 16x – 68
y = 4x – 17 (với y < 0)
• AC = BD AC2 = BD2
82 + (–2)2 = (10 – 2x)2 + (6 – 2y)2
64 + 4 = (10 – 2x)2 + [6 – 2(4x – 17)]2
(10 – 2x)2 + (6 – 8x + 34)2 = 68
(10 – 2x)2 + (40 – 8x)2 = 68
4.(x – 5)2 + 64.(x – 5)2 = 68
(x – 5)2 = 1
Với x = 6 ta có y = 4.6 – 17 = 7 (không thỏa mãn y < 0)
Với x = 4 ta có y = 4.4 – 17 = –1 (thỏa mãn y < 0)
Khi đó ta có điểm B(4; –1)
Mà D(10 – x; 6 – y) nên D(6; 7).
Vậy B(4; –1) và D(6; 7).
a) Tìm toạ độ của điểm C thuộc trục hoành sao cho C cách đều A và B.
b) Tìm toạ độ của điểm D thuộc trục tung sao cho vectơ có độ dài ngắn nhất.
Lời giải:
a) Vì C cách đều A và B nên CA = CB
AC2 = BC2
Giả sử C(x; 0) là điểm thuộc trục hoành
Với A(1; 1); B(7; 5) và C(x; 0) ta có:
• AC2 = (x – 1)2 + (–1)2
AC2 = x2 – 2x + 2
• BC2 = (x – 7)2 + (–5)2
BC2 = x2 – 14x + 74
Do đó AC2 = BC2
x2 – 2x + 2 = x2 – 14x + 74
12x = 72
x = 6
Vậy C(6; 0).
b) Gọi M là trung điểm của AB.
Khi đó
Do đó để vectơ có độ dài ngắn nhất thì vectơ có độ dài ngắn nhất
DM có độ dài ngắn nhất
Hay DM2 nhỏ nhất.
Giả sử D(0; y) là điểm thuộc trục tung
Với A(1; 1); B(7; 5) và D(0; y) ta có:
M(4; 3)
DM2 = 42 + (3 – y)2
Hay DM2 = (y – 3)2 + 16
Vì (y – 3)2 ≥ 0 với mọi y
Nên (y – 3)2 + 16 ≥ 16 với mọi y
Hay DM2 ≥ 16 với mọi y
Dấu “=” xảy ra khi và chỉ khi y – 3 = 0 Û y = 3.
Do đó DM đạt giá trị nhỏ nhất khi D(0; 3)
Vậy D(0; 3) thì vectơ có độ dài ngắn nhất.
a) Chứng minh rằng A, B, C là ba đỉnh của một tam giác. Tìm toạ độ trọng tâm G của tam giác ấy.
b) Tìm toạ độ trực tâm H của tam giác ABC.
c) Gọi I là tâm đường tròn ngoại tiếp tam giác ABC. Tìm toạ độ của I.
Lời giải:
a) Với A(–3; 2), B(1; 5) và C(3; −1) ta có:
và
Vì nên hai vectơ và không cùng phương
Do đó ba điểm A, B, C không thẳng hàng
Vậy A, B, C là ba đỉnh của một tam giác.
Vì G là trọng tâm của tam giác ABC nên ta có:
Vậy tọa độ trọng tâm của tam giác ABC là: .
b) Vì H là trực tâm của tam giác ABC nên AH ⊥ BC và BH ⊥ AC
Hay và
Giả sử H(x; y) là tọa độ trực tâm tam giác ABC
Với A(–3; 2), B(1; 5), C(3; −1) và H(x; y) ta có:
• và
2x – 6y = –18
x – 3y = –9 (1)
• và
6x – 3y = –9 (2)
Trừ vế theo vế (2) cho (1) ta có:
5x = 0 x = 0
y = 3
H(0; 3)
Vậy tọa độ trực tâm của tam giác ABC là H(0; 3)
c) Theo kết quả phần a) của Bài 4.15, trang 54, Sách Bài tập, Toán 10, tập một ta có:
với M là trung điểm của BC.
Giả sử I(a; b) là tọa độ tâm đường tròn ngoại tiếp tam giác ABC
Với A(–3; 2), B(1; 5), C(3; −1), H(0; 3) và I(a; b) ta có:
•
M(2; 2)
Ta có
Vậy tọa độ tâm đường tròn ngoại tiếp tam giác ABC là
a) Chất điểm chuyển động theo đường gấp khúc từ M đến N rồi tiếp tục từ N đến P.
b) Chất điểm chuyển động thẳng từ M đến P.
Lời giải:
a) Do lực không đổi tác động lên một chất điểm trong suốt quá trình chuyển động của chất điểm nên công sinh bởi lực khi chất điểm chuyển động theo đường gấp khúc từ M đến N rồi tiếp tục từ N đến P là:
A1 =
A1
A1 (1)
b) Do lực không đổi tác động lên một chất điểm trong suốt quá trình chuyển động của chất điểm nên công sinh bởi lực khi chất điểm chuyển động thẳng từ M đến P là:
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.