Với Giải SBT Toán 10 trang 66 Tập 1 trong Bài 11: Tích vô hướng của hai vectơ bài tập Toán lớp 10 Tập 1 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 10 trang 66.
Trong mặt phẳng toạ độ Oxy cho ba điểm A(–3; 2), B(1; 5) và C(3; −1)
Bài 4.36 trang 66 sách bài tập Toán lớp 10 Tập 1: Trong mặt phẳng toạ độ Oxy cho ba điểm A(–3; 2), B(1; 5) và C(3; −1).
a) Tìm toạ độ của điểm C thuộc trục hoành sao cho C cách đều A và B.
b) Tìm toạ độ của điểm D thuộc trục tung sao cho vectơ có độ dài ngắn nhất.
Lời giải:
a) Vì C cách đều A và B nên CA = CB
AC2 = BC2
Giả sử C(x; 0) là điểm thuộc trục hoành
Với A(1; 1); B(7; 5) và C(x; 0) ta có:
• AC2 = (x – 1)2 + (–1)2
AC2 = x2 – 2x + 2
• BC2 = (x – 7)2 + (–5)2
BC2 = x2 – 14x + 74
Do đó AC2 = BC2
x2 – 2x + 2 = x2 – 14x + 74
12x = 72
x = 6
Vậy C(6; 0).
b) Gọi M là trung điểm của AB.
Khi đó
Do đó để vectơ có độ dài ngắn nhất thì vectơ có độ dài ngắn nhất
DM có độ dài ngắn nhất
Hay DM2 nhỏ nhất.
Giả sử D(0; y) là điểm thuộc trục tung
Với A(1; 1); B(7; 5) và D(0; y) ta có:
M(4; 3)
DM2 = 42 + (3 – y)2
Hay DM2 = (y – 3)2 + 16
Vì (y – 3)2 ≥ 0 với mọi y
Nên (y – 3)2 + 16 ≥ 16 với mọi y
Hay DM2 ≥ 16 với mọi y
Dấu “=” xảy ra khi và chỉ khi y – 3 = 0 Û y = 3.
Do đó DM đạt giá trị nhỏ nhất khi D(0; 3)
Vậy D(0; 3) thì vectơ có độ dài ngắn nhất.
Xem thêm lời giải vở bài tập Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:
Bài 4.29 trang 65 sách bài tập Toán lớp 10 Tập 1: Cho tam giác đều ABC có độ dài các cạnh bằng 1...
Bài 4.29 trang 65 sách bài tập Toán lớp 10 Tập 1: Cho tam giác đều ABC có độ dài các cạnh bằng 1...
Bài 4.32 trang 65 sách bài tập Toán lớp 10 Tập 1: Cho hai vectơ a và b thoả mãn ...
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.